Recent Developments in Semiconductor Thermoelectric Physics and Materials

热电材料 热电效应 材料科学 功勋 工程物理 半导体 热电发电机 热导率 塞贝克系数 凝聚态物理 纳米技术 光电子学 物理 热力学 复合材料
作者
Ali Shakouri
出处
期刊:Annual Review of Materials Research [Annual Reviews]
卷期号:41 (1): 399-431 被引量:694
标识
DOI:10.1146/annurev-matsci-062910-100445
摘要

Recent advances in semiconductor thermoelectric physics and materials are reviewed. A key requirement to improve the energy conversion efficiency is to increase the Seebeck coefficient (S) and the electrical conductivity (σ) while reducing the electronic and lattice contributions to thermal conductivity (κ e + κ L ). Some new physical concepts and nanostructures make it possible to modify the trade-offs between the bulk material properties through changes in the density of states, scattering rates, and interface effects on electron and phonon transport. We review recent experimental and theoretical results on nanostructured materials of various dimensions: superlattices, nanowires, nanodots, and solid-state thermionic power generation devices. Most of the recent success has been in the reduction of lattice thermal conductivity with the concurrent maintenance of good electrical conductivity. Several theoretical and experimental results to improve the thermoelectric power factor (S 2 σ) and to reduce the Lorenz number (σ/κ e ) are presented. We briefly describe recent developments in nonlinear thermoelectrics, as well as the generalization of the Bergman theorem for composite materials. Although the material thermoelectric figure of merit Z [=S 2 σ/(κ e + κ L )] is a key parameter to optimize, one has to consider the whole system in an energy conversion application. A rarely discussed but important efficiency/cost trade-off for thermoelectric power generation is briefly reviewed, and research directions for the development of low-cost thermoelectric materials are identified. Finally, we highlight the importance of the figure of merit, Z, beyond macroscale energy conversion applications in describing the microscopic coupling between charge and energy transport in materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
5秒前
冷静柜子完成签到,获得积分10
5秒前
所所应助黄毛虎采纳,获得10
6秒前
大模型应助阳光的电脑采纳,获得10
6秒前
顺利顺利应助风趣的语蕊采纳,获得10
6秒前
Lasse应助风趣的语蕊采纳,获得10
6秒前
iceice发布了新的文献求助10
7秒前
难过衫发布了新的文献求助10
8秒前
10秒前
NexusExplorer应助XIN采纳,获得10
10秒前
12秒前
Volume发布了新的文献求助10
12秒前
cc完成签到,获得积分10
13秒前
佳丽完成签到,获得积分10
13秒前
14秒前
大雁完成签到 ,获得积分10
15秒前
烟花应助LeezZZZ采纳,获得50
16秒前
睚眦倒影完成签到,获得积分10
16秒前
SciGPT应助Szhou采纳,获得10
16秒前
深情安青应助顺心冬卉采纳,获得10
17秒前
17秒前
李剑鸿发布了新的文献求助50
17秒前
Akim应助Volume采纳,获得10
18秒前
研友_841zXL发布了新的文献求助30
18秒前
21秒前
踏实的南琴完成签到 ,获得积分10
21秒前
yu发布了新的文献求助10
22秒前
23秒前
阳光的电脑完成签到,获得积分20
23秒前
研友_841zXL完成签到,获得积分0
28秒前
LeezZZZ发布了新的文献求助50
29秒前
Hello应助难过衫采纳,获得10
31秒前
32秒前
CipherSage应助Dawn采纳,获得10
33秒前
33秒前
英俊的铭应助t1ant1an采纳,获得10
33秒前
33秒前
青梨完成签到 ,获得积分10
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818646
求助须知:如何正确求助?哪些是违规求助? 3361710
关于积分的说明 10413854
捐赠科研通 3079926
什么是DOI,文献DOI怎么找? 1693653
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248