Analytical Study of Electronic Structure in Archimedean Type-Spiral Zig-Zag Graphene Nanoscroll

石墨烯 带隙 材料科学 色散(光学) 凝聚态物理 电子能带结构 紧密结合 工作(物理) 电子结构 螺旋(铁路) 物理 纳米技术 量子力学 数学 数学分析
作者
Afiq Hamzah,Mohammad Taghi Ahmadi,Razali Ismail
出处
期刊:Current Nanoscience [Bentham Science Publishers]
卷期号:11 (1): 87-94 被引量:3
标识
DOI:10.2174/1573413710999140918201702
摘要

The semiconducting electronic properties of graphene nanoscroll (GNS) are very much related to its geometric structure. The aim of this study is to construct a GNS energy dispersion model within low-energy transport of 1 eV in identifying its electronic properties and carrier statistics. Non-parabolic energy dispersion is used to incorporate the Archimedean type-spiral model, and the band gap is assessed based on chirality and geometry effects. The energy band within low-energy transport indicates that GNS can achieve a quantum conductance limit of ~6.45 kΩ for ballistic transport. On the other hand, the numbers for three minimum sub-bands are attained based on non-parabolic energy dispersion, and the semi-metallic zig-zag GNS is found at chirality (3j + 1, 0). This work consistently predicts the semiconducting properties of the tight-binding model from previous work. The GNS overlapping region strongly affects its electronic properties. Constantly increasing the length of the overlapping region decreases the band gap exponentially, whilst semimetallic GNS forms when the overlap reaches a certain limit. The carrier density with temperature dependence is subsequently assessed at the intrinsic level, and found that the number of carriers in GNS shows a higher rate of increment (exponentially) compared to carbon nanotubes (CNT), in accordance to their diameter. The results are very useful in giving an intuitive understanding on GNS carrier statistics as subject to geometry changes. Keywords: Band gap, chirality, graphene nanoscroll, intrinsic carrier density, low-energy transport, overlapping region.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁丁发布了新的文献求助10
5秒前
5秒前
ding应助蔚欢采纳,获得10
5秒前
Deseorz完成签到,获得积分10
5秒前
研友_n2Bkrn完成签到,获得积分10
8秒前
xi122完成签到,获得积分10
8秒前
xcy发布了新的文献求助10
11秒前
Yjh完成签到,获得积分10
12秒前
青水完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
科研通AI2S应助丁丁采纳,获得10
15秒前
shelley完成签到,获得积分10
18秒前
今后应助xcy采纳,获得10
18秒前
Emil发布了新的文献求助10
18秒前
英俊的胜发布了新的文献求助10
19秒前
leonork完成签到,获得积分10
19秒前
Emil完成签到,获得积分20
26秒前
28秒前
花城完成签到 ,获得积分10
30秒前
可爱的函函应助沐1217采纳,获得10
31秒前
scienceL发布了新的文献求助10
31秒前
小呱完成签到 ,获得积分10
33秒前
yyds应助浮生采纳,获得50
33秒前
33秒前
采珺应助哇咔咔采纳,获得10
34秒前
Jasper应助111111111采纳,获得10
35秒前
在水一方应助hhhhzx采纳,获得10
36秒前
38秒前
张小科完成签到,获得积分10
39秒前
orixero应助zzk采纳,获得10
40秒前
40秒前
粥粥顺利发布了新的文献求助10
41秒前
BareBear应助cyw_1037405062采纳,获得10
41秒前
Owen应助科研通管家采纳,获得10
44秒前
MR_MA应助科研通管家采纳,获得10
44秒前
8R60d8应助科研通管家采纳,获得10
44秒前
大个应助科研通管家采纳,获得10
44秒前
彭于晏应助科研通管家采纳,获得10
44秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899758
求助须知:如何正确求助?哪些是违规求助? 3444367
关于积分的说明 10834793
捐赠科研通 3169337
什么是DOI,文献DOI怎么找? 1751092
邀请新用户注册赠送积分活动 846457
科研通“疑难数据库(出版商)”最低求助积分说明 789206