Semi-supervised learning approach for malicious URL detection via adversarial learning1

计算机科学 对抗制 机器学习 人工智能 支持向量机 资源(消歧) 生成对抗网络 数据挖掘 深度学习 监督学习 人工神经网络 计算机网络
作者
Jie Ling,Su Xiong,Yu Luo
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:41 (2): 3083-3092
标识
DOI:10.3233/jifs-210212
摘要

Uniform Resource Location (URL) is the network unified resource location system that specifies the location and access method of resources on the Internet. At present, malicious URL has become one of the main means of network attack. How to detect malicious URL timely and accurately has become an engaging research topic. The recent proposed deep learning-based detection models can achieve high accuracy in simulations, but several problems are exposed when they are used in real applications. These models need a balanced labeled dataset for training, while collecting large numbers of the latest labeled URL samples is difficult due to the rapid generation of URL in the real application environment. In addition, in most randomly collected datasets, the number of benign URL samples and malicious URL samples is extremely unbalanced, as malicious URL samples are often rare. This paper proposes a semi-supervised learning malicious URL detection method based on generative adversarial network (GAN) to solve the above two problems. By utilizing the unlabeled URLs for model training in a semi-supervised way, the requirement of large numbers of labeled samples is weakened. And the imbalance problem can be relieved with the synthetic malicious URL generated by adversarial learning. Experimental results show that the proposed method outperforms the classic SVM and LSTM based methods. Specially, the proposed method can obtain high accuracy with insufficient labeled samples and unbalanced dataset. e.g., the proposed method can achieve 87.8% /91.9% detection accuracy when the number of labeled samples is reduced to 20% /40% of that of conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半生瓜应助陈治君采纳,获得10
刚刚
刚刚
能干的吐司完成签到 ,获得积分10
1秒前
大个应助追寻的易巧采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
Akim应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
孙燕应助科研通管家采纳,获得20
2秒前
打打应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得30
2秒前
所所应助科研通管家采纳,获得10
2秒前
茜茜哎科研完成签到,获得积分10
2秒前
2秒前
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
jixuzhuixun发布了新的文献求助10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
zzzq应助科研通管家采纳,获得10
3秒前
子皿一完成签到,获得积分10
3秒前
smottom应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
喵喵大王发布了新的文献求助10
5秒前
5秒前
6秒前
科研通AI2S应助鼓励男孩采纳,获得10
7秒前
Limin发布了新的文献求助80
7秒前
shinku完成签到,获得积分10
8秒前
明理香烟发布了新的文献求助10
9秒前
林七七发布了新的文献求助30
11秒前
隐形曼青应助Limin采纳,获得20
12秒前
Ava应助奋斗夏烟采纳,获得10
13秒前
研友_VZG7GZ应助侦察兵采纳,获得10
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846501
求助须知:如何正确求助?哪些是违规求助? 3388981
关于积分的说明 10555297
捐赠科研通 3109436
什么是DOI,文献DOI怎么找? 1713719
邀请新用户注册赠送积分活动 824868
科研通“疑难数据库(出版商)”最低求助积分说明 775101