Embracing Ensemble Species Distribution Models to Inform At-Risk Species Status Assessments

物种分布 濒危物种 环境生态位模型 野生动物 保护状况 生态学 栖息地 广义加性模型 环境资源管理 计算机科学 生物 生态位 环境科学 机器学习
作者
Carlos Ramirez‐Reyes,Mona Nazeri,Garrett M. Street,D. Todd Jones‐Farrand,Francisco J. Vilella,Kristine O. Evans
出处
期刊:Journal of Fish and Wildlife Management [U.S. Fish and Wildlife Service]
卷期号:12 (1): 98-111 被引量:40
标识
DOI:10.3996/jfwm-20-072
摘要

Abstract Conservation planning depends on reliable information regarding the geographic distribution of species. However, our knowledge of species' distributions is often incomplete, especially when species are cryptic, difficult to survey, or rare. The use of species distribution models has increased in recent years and proven a valuable tool to evaluate habitat suitability for species. However, practitioners have yet to fully adopt the potential of species distribution models to inform conservation efforts for information-limited species. Here, we describe a species distribution modeling approach for at-risk species that could better inform U.S. Fish and Wildlife Service's species status assessments and help facilitate conservation decisions. We applied four modeling techniques (generalized additive, maximum entropy, generalized boosted, and weighted ensemble) to occurrence data for four at-risk species proposed for listing under the U.S. Endangered Species Act (Papaipema eryngii, Macbridea caroliniana, Scutellaria ocmulgee, and Balduina atropurpurea) in the Southeastern United States. The use of ensemble models reduced uncertainty caused by differences among modeling techniques, with a consequent improvement of predictive accuracy of fitted models. Incorporating an ensemble modeling approach into species status assessments and similar frameworks is likely to benefit survey efforts, inform recovery activities, and provide more robust status assessments for at-risk species. We emphasize that co-producing species distribution models in close collaboration with species experts has the potential to provide better calibration data and model refinements, which could ultimately improve reliance and use of model outputs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何木木完成签到,获得积分10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
亚亚发布了新的文献求助10
1秒前
风中冰香应助科研通管家采纳,获得10
1秒前
1秒前
无花果应助科研通管家采纳,获得10
1秒前
子车茗应助科研通管家采纳,获得20
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
风中冰香应助科研通管家采纳,获得10
1秒前
尉迟希望应助科研通管家采纳,获得10
1秒前
午盏发布了新的文献求助10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得50
2秒前
风中冰香应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
FuZh完成签到,获得积分10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
wanci应助科研通管家采纳,获得10
3秒前
核桃应助kingwill采纳,获得30
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285214
求助须知:如何正确求助?哪些是违规求助? 4438408
关于积分的说明 13817108
捐赠科研通 4319670
什么是DOI,文献DOI怎么找? 2371086
邀请新用户注册赠送积分活动 1366645
关于科研通互助平台的介绍 1330103