Relevant and Non-Redundant Feature Subset Selection Applied to the Detection of Malware in a Network

计算机科学 特征选择 人工智能 数据挖掘 恶意软件 随机森林 入侵检测系统 Boosting(机器学习) 冗余(工程) 公制(单位) 机器学习 模式识别(心理学) 选择(遗传算法) 滤波器(信号处理) 阿达布思 支持向量机 操作系统 计算机视觉 运营管理 经济
作者
Franklin Parrales–Bravo,Joel Torres-Urresto,Dayannara Avila-Maldonado,Julio Barzola–Monteses
标识
DOI:10.1109/etcm53643.2021.9590777
摘要

Removing redundant features is one of the goals addressed by the feature subset selection techniques (FSS). According to some studies, the selection of non-redundant features is not guaranteed when using only a filter or a wrapper FSS approach. Thus, the aim of this research is to present a methodology to train intrusion detection models that considers a combination of filter and wrapper FSS techniques to guarantee the selection of non-redundant attributes in the data pre-processing phase. To test the effectiveness of the proposed technique, the accuracy of the trained models with the features selected by the proposed technique was evaluated on a set of malware detection data. The classifying algorithms selected for training the malware-detection models were: i) Random Forest, ii) C4.5, iii) Adaboost, iv) Gradient boosting. Based on the accuracy metric, the malware detection model that obtained the best results was the one trained with the RandomForest algorithm. This model achieved an average of 99.42% accuracy when using the proposed feature selection technique, improving by 0.10% the accuracy of the model trained with the same algorithm, but without the use of the proposed methodology. Therefore, we can conclude that the models trained with the proposed methodology provide similar results to the models that do not use it, having the advantage of removing all redundant features from the dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qingzhiwu发布了新的文献求助10
1秒前
一一发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
3秒前
Qin发布了新的文献求助10
3秒前
科研通AI5应助称心千凝采纳,获得10
3秒前
4秒前
传奇3应助含糊的蓉蓉采纳,获得10
4秒前
眼科女医生小魏完成签到 ,获得积分10
4秒前
科研通AI2S应助桀庚采纳,获得10
5秒前
小垃圾发布了新的文献求助10
5秒前
萌萌许发布了新的文献求助10
5秒前
不安的夜柳完成签到,获得积分10
6秒前
万能图书馆应助小边采纳,获得10
6秒前
斯文败类应助酷www采纳,获得10
6秒前
科研通AI5应助负责乐安采纳,获得10
7秒前
嘻嘻发布了新的文献求助10
7秒前
shawn_89发布了新的文献求助10
7秒前
任性未来完成签到,获得积分10
7秒前
毛毛发布了新的文献求助10
8秒前
minikk完成签到,获得积分10
8秒前
Agoni完成签到,获得积分20
8秒前
8秒前
8秒前
9秒前
chase完成签到,获得积分10
9秒前
11秒前
12秒前
鲜艳的仙人掌完成签到,获得积分10
12秒前
丰富的不惜完成签到,获得积分10
13秒前
qingzhiwu完成签到,获得积分10
14秒前
Mike14完成签到,获得积分10
14秒前
15秒前
未来已来发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
666完成签到,获得积分10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793624
求助须知:如何正确求助?哪些是违规求助? 3338571
关于积分的说明 10290280
捐赠科研通 3054974
什么是DOI,文献DOI怎么找? 1676259
邀请新用户注册赠送积分活动 804300
科研通“疑难数据库(出版商)”最低求助积分说明 761836