Natural language processing and machine learning of electronic health records for prediction of first-time suicide attempts

人口统计学的 自杀未遂 医学 队列 病历 萧条(经济学) 健康档案 机器学习 人工智能 急诊科 毒物控制 自杀预防 人口学 计算机科学 医疗急救 精神科 医疗保健 内科学 经济 社会学 宏观经济学 经济增长
作者
Fuchiang Tsui,Lingyun Shi,Vı́ctor Ruiz,Neal D. Ryan,Candice Biernesser,Satish Iyengar,Colin G. Walsh,David A. Brent
出处
期刊:JAMIA open [University of Oxford]
卷期号:4 (1): ooab011-ooab011 被引量:92
标识
DOI:10.1093/jamiaopen/ooab011
摘要

Abstract Objective Limited research exists in predicting first-time suicide attempts that account for two-thirds of suicide decedents. We aimed to predict first-time suicide attempts using a large data-driven approach that applies natural language processing (NLP) and machine learning (ML) to unstructured (narrative) clinical notes and structured electronic health record (EHR) data. Methods This case-control study included patients aged 10–75 years who were seen between 2007 and 2016 from emergency departments and inpatient units. Cases were first-time suicide attempts from coded diagnosis; controls were randomly selected without suicide attempts regardless of demographics, following a ratio of nine controls per case. Four data-driven ML models were evaluated using 2-year historical EHR data prior to suicide attempt or control index visits, with prediction windows from 7 to 730 days. Patients without any historical notes were excluded. Model evaluation on accuracy and robustness was performed on a blind dataset (30% cohort). Results The study cohort included 45 238 patients (5099 cases, 40 139 controls) comprising 54 651 variables from 5.7 million structured records and 798 665 notes. Using both unstructured and structured data resulted in significantly greater accuracy compared to structured data alone (area-under-the-curve [AUC]: 0.932 vs. 0.901 P < .001). The best-predicting model utilized 1726 variables with AUC = 0.932 (95% CI, 0.922–0.941). The model was robust across multiple prediction windows and subgroups by demographics, points of historical most recent clinical contact, and depression diagnosis history. Conclusions Our large data-driven approach using both structured and unstructured EHR data demonstrated accurate and robust first-time suicide attempt prediction, and has the potential to be deployed across various populations and clinical settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
窗外雨声停完成签到,获得积分10
刚刚
Owen应助高强采纳,获得10
1秒前
shangfeng发布了新的文献求助10
1秒前
1秒前
xiaorain完成签到,获得积分10
1秒前
完美的滑板完成签到 ,获得积分10
2秒前
2秒前
2秒前
zhang完成签到,获得积分10
2秒前
hhh发布了新的文献求助10
3秒前
dsjlove完成签到,获得积分10
4秒前
烟花应助咸鱼lmye采纳,获得10
4秒前
4秒前
小绵羊完成签到,获得积分20
4秒前
丘比特应助leiao采纳,获得10
4秒前
5秒前
zhang发布了新的文献求助10
5秒前
5秒前
Mars_X发布了新的文献求助10
6秒前
深情安青应助紫菜采纳,获得10
6秒前
科研通AI2S应助任性的幻儿采纳,获得10
6秒前
二闲发布了新的文献求助10
7秒前
乐乐应助简单思萱采纳,获得10
7秒前
song完成签到 ,获得积分10
7秒前
遇见完成签到,获得积分20
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
我是老大应助zu采纳,获得10
9秒前
Ting发布了新的文献求助10
9秒前
瑾瑜完成签到 ,获得积分10
9秒前
充电宝应助qz采纳,获得10
9秒前
传奇3应助min17采纳,获得10
9秒前
听听发布了新的文献求助10
10秒前
10秒前
张张发布了新的文献求助20
10秒前
小鱼儿发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316970
求助须知:如何正确求助?哪些是违规求助? 4459426
关于积分的说明 13875166
捐赠科研通 4349392
什么是DOI,文献DOI怎么找? 2388806
邀请新用户注册赠送积分活动 1382917
关于科研通互助平台的介绍 1352288