Towards improved breast mass detection using dual-view mammogram matching

计算机科学 人工智能 管道(软件) 匹配(统计) 机器学习 模式识别(心理学) 乳腺癌 乳腺摄影术 计算机视觉 癌症 数学 医学 统计 内科学 程序设计语言
作者
Yutong Yan,Pierre-Henri Conze,Mathieu Lamard,Gwénolé Quellec,Béatrice Cochener,Gouenou Coatrieux
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:71: 102083-102083 被引量:23
标识
DOI:10.1016/j.media.2021.102083
摘要

Breast cancer screening benefits from the visual analysis of multiple views of routine mammograms. As for clinical practice, computer-aided diagnosis (CAD) systems could be enhanced by integrating multi-view information. In this work, we propose a new multi-tasking framework that combines craniocaudal (CC) and mediolateral-oblique (MLO) mammograms for automatic breast mass detection. Rather than addressing mass recognition only, we exploit multi-tasking properties of deep networks to jointly learn mass matching and classification, towards better detection performance. Specifically, we propose a unified Siamese network that combines patch-level mass/non-mass classification and dual-view mass matching to take full advantage of multi-view information. This model is exploited in a full image detection pipeline based on You-Only-Look-Once (YOLO) region proposals. We carry out exhaustive experiments to highlight the contribution of dual-view matching for both patch-level classification and examination-level detection scenarios. Results demonstrate that mass matching highly improves the full-pipeline detection performance by outperforming conventional single-task schemes with 94.78% as Area Under the Curve (AUC) score and a classification accuracy of 0.8791. Interestingly, mass classification also improves the performance of mass matching, which proves the complementarity of both tasks. Our method further guides clinicians by providing accurate dual-view mass correspondences, which suggests that it could act as a relevant second opinion for mammogram interpretation and breast cancer diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃肥牛发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
4秒前
香蕉觅云应助liu采纳,获得10
4秒前
受伤菲音发布了新的文献求助10
5秒前
华仔应助小强x采纳,获得10
5秒前
5秒前
无敌吴硕应助Terry采纳,获得10
5秒前
6秒前
w_tiger发布了新的文献求助10
7秒前
lunan发布了新的文献求助10
8秒前
8秒前
8秒前
LexMz发布了新的文献求助10
8秒前
9秒前
9秒前
ahtj完成签到,获得积分10
9秒前
饱满的棒棒糖完成签到,获得积分10
9秒前
10秒前
10秒前
斯文的小旋风应助靖靖吖采纳,获得10
10秒前
Maxpan发布了新的文献求助10
11秒前
斯文败类应助YANG采纳,获得10
11秒前
12秒前
12秒前
汉堡包应助rwpeng采纳,获得10
12秒前
12秒前
12秒前
orixero应助Joker采纳,获得10
12秒前
专注妙海发布了新的文献求助10
13秒前
13秒前
13秒前
manyi1972发布了新的文献求助10
14秒前
笑眯眯发布了新的文献求助10
14秒前
bao应助快乐小子采纳,获得20
14秒前
简单的千凝应助求解限采纳,获得50
15秒前
hustzwqq发布了新的文献求助10
15秒前
lemon完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794290
求助须知:如何正确求助?哪些是违规求助? 3339195
关于积分的说明 10294538
捐赠科研通 3055817
什么是DOI,文献DOI怎么找? 1676819
邀请新用户注册赠送积分活动 804770
科研通“疑难数据库(出版商)”最低求助积分说明 762149