Can perihaematomal radiomics features predict haematoma expansion?

医学 接收机工作特性 队列 无线电技术 倾向得分匹配 回顾性队列研究 曲线下面积 内科学 人工智能 放射科 计算机科学
作者
D. Zhu,Mengshi Zhang,Qiang Li,Jun-Ying Liu,Yuandi Zhuang,Qian Chen,Chen Chen,Yingying Xiang,Yan Zhang,Yuying Yang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:76 (8): 629.e1-629.e9 被引量:16
标识
DOI:10.1016/j.crad.2021.03.003
摘要

•Discriminating the patients at high risk for haematoma expansion is important. •Both intra- and perihaematomal radiomics features haematoma expansion. •A prediction model combining intra- and perihaematomal radiomics features was built. •The combined-model achieved the highest accuracy and clinical value. AIM To evaluate the association between perihaematomal radiomics features and haematoma expansion (HE). MATERIALS AND METHODS Clinical and radiological data were collected retrospectively. The 1:1 propensity score matching (PSM) method was used to balance the difference of baseline characteristics between patients with and without HE. Radiomics features were extracted from the intra- and perihaematomal regions. Top HE-associated features were selected using the minimum redundancy, maximum relevancy algorithm. Support vector machine models were used to predict HE. Predictive performance of radiomics features from different regions was evaluated by receiver operating characteristic curve and confusion matrix-derived metrics. RESULTS A total of 1,062 patients were enrolled. After PSM analysis, the propensity score-matched cohort (PSM cohort) included 314 patients (HE: n=157; non-HE: n=157). The PSM cohort was distributed into the training (n=218) and the validation cohorts (n=96). The predictive performance of intra- and perihaematomal features were comparable in the training (area under the receiver operating characteristic curve [AUC], 0.751 versus 0.757; p=0.867) and the validation cohorts (AUC, 0.724 versus 0.671; p=0.454). By incorporating intra- and perihaematomal features, the combined model outperformed the single intrahaematomal model in the training cohort (AUC, 0.872 versus 0.751; p<0.001). Decision curve analysis (DCA) further confirmed the clinical usefulness of the combined model. CONCLUSION Perihaematomal radiomics features can predict HE. The integration of intra- and perihaematomal signatures may provide additional benefit to the prediction of HE. To evaluate the association between perihaematomal radiomics features and haematoma expansion (HE). Clinical and radiological data were collected retrospectively. The 1:1 propensity score matching (PSM) method was used to balance the difference of baseline characteristics between patients with and without HE. Radiomics features were extracted from the intra- and perihaematomal regions. Top HE-associated features were selected using the minimum redundancy, maximum relevancy algorithm. Support vector machine models were used to predict HE. Predictive performance of radiomics features from different regions was evaluated by receiver operating characteristic curve and confusion matrix-derived metrics. A total of 1,062 patients were enrolled. After PSM analysis, the propensity score-matched cohort (PSM cohort) included 314 patients (HE: n=157; non-HE: n=157). The PSM cohort was distributed into the training (n=218) and the validation cohorts (n=96). The predictive performance of intra- and perihaematomal features were comparable in the training (area under the receiver operating characteristic curve [AUC], 0.751 versus 0.757; p=0.867) and the validation cohorts (AUC, 0.724 versus 0.671; p=0.454). By incorporating intra- and perihaematomal features, the combined model outperformed the single intrahaematomal model in the training cohort (AUC, 0.872 versus 0.751; p<0.001). Decision curve analysis (DCA) further confirmed the clinical usefulness of the combined model. Perihaematomal radiomics features can predict HE. The integration of intra- and perihaematomal signatures may provide additional benefit to the prediction of HE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
105完成签到 ,获得积分10
刚刚
笑对人生完成签到 ,获得积分10
1秒前
荔枝励志完成签到 ,获得积分10
1秒前
得了MVP完成签到,获得积分10
2秒前
ASDq完成签到,获得积分10
3秒前
BAI_1完成签到,获得积分10
5秒前
翟闻雨完成签到,获得积分10
6秒前
ljx完成签到 ,获得积分0
6秒前
xqing发布了新的文献求助30
8秒前
鹤川完成签到 ,获得积分10
11秒前
月亮啊完成签到 ,获得积分10
13秒前
啦啦啦啦啦完成签到 ,获得积分10
14秒前
15秒前
为什么不可用完成签到,获得积分10
15秒前
NiNi完成签到 ,获得积分10
17秒前
甘川完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
想人陪的万言完成签到,获得积分10
20秒前
缥缈的冰旋完成签到,获得积分10
22秒前
25秒前
在水一方应助科研通管家采纳,获得50
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
CodeCraft应助科研通管家采纳,获得10
25秒前
默默新波完成签到 ,获得积分10
25秒前
123完成签到,获得积分10
27秒前
29秒前
zaochen完成签到 ,获得积分10
31秒前
littlebenk完成签到,获得积分10
34秒前
一一完成签到 ,获得积分10
34秒前
科研王完成签到 ,获得积分10
35秒前
笨笨书芹完成签到 ,获得积分10
36秒前
jessicaw完成签到,获得积分0
37秒前
37秒前
解惑大师完成签到 ,获得积分10
38秒前
zyb完成签到 ,获得积分10
41秒前
美好灵寒完成签到 ,获得积分10
43秒前
上善若水呦完成签到 ,获得积分10
44秒前
量子星尘发布了新的文献求助10
44秒前
一三二五七完成签到 ,获得积分0
46秒前
勤奋的绝义完成签到 ,获得积分10
46秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450504
求助须知:如何正确求助?哪些是违规求助? 4558218
关于积分的说明 14265752
捐赠科研通 4481783
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421880