清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Genomic Selection and Association Mapping in Rice (Oryza sativa): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice Breeding Lines

生物 数量性状位点 最佳线性无偏预测 人口 基因组选择 水稻 标记辅助选择 选择(遗传算法) 关联映射 植物育种 育种计划 全基因组关联研究 遗传学 生物技术 单核苷酸多态性 农学 基因型 机器学习 基因 栽培 社会学 计算机科学 人口学
作者
Jennifer Spindel,Hasina Begum,Deniz Akdemir,P. S. Virk,B. C. Y. Collard,Edilberto D. Redoña,G. N. Atlin,Jean‐Luc Jannink,Susan R. McCouch
出处
期刊:PLOS Genetics [Public Library of Science]
卷期号:11 (2): e1004982-e1004982 被引量:572
标识
DOI:10.1371/journal.pgen.1004982
摘要

Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI) irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
想人陪的飞雪完成签到,获得积分10
2秒前
annazhang发布了新的文献求助30
8秒前
研友_VZG7GZ应助读书的时候采纳,获得10
10秒前
胡国伦完成签到 ,获得积分10
22秒前
rockyshi完成签到 ,获得积分10
24秒前
happy完成签到,获得积分10
30秒前
爆米花应助读书的时候采纳,获得10
43秒前
Iris完成签到 ,获得积分10
50秒前
李爱国应助xun采纳,获得10
1分钟前
1分钟前
烟花应助读书的时候采纳,获得10
1分钟前
xun发布了新的文献求助10
1分钟前
科目三应助HH采纳,获得10
1分钟前
Axel完成签到,获得积分10
1分钟前
xun完成签到,获得积分20
1分钟前
1分钟前
HH发布了新的文献求助10
1分钟前
我哪知道怎么完成签到 ,获得积分10
1分钟前
2分钟前
喜悦的唇彩完成签到,获得积分10
2分钟前
JamesPei应助HH采纳,获得10
2分钟前
迷茫的一代完成签到,获得积分10
2分钟前
彭于晏应助读书的时候采纳,获得10
2分钟前
冷静的尔竹完成签到,获得积分10
2分钟前
2分钟前
creep2020完成签到,获得积分10
2分钟前
muriel完成签到,获得积分0
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
cxt12138完成签到 ,获得积分10
2分钟前
annazhang完成签到 ,获得积分10
2分钟前
2分钟前
蛋黄啵啵完成签到 ,获得积分10
3分钟前
3分钟前
Wang完成签到 ,获得积分20
3分钟前
心灵美夏柳完成签到 ,获得积分10
3分钟前
3分钟前
Verity应助亚铁氰化钾采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732617
求助须知:如何正确求助?哪些是违规求助? 5341123
关于积分的说明 15322380
捐赠科研通 4878065
什么是DOI,文献DOI怎么找? 2620916
邀请新用户注册赠送积分活动 1570074
关于科研通互助平台的介绍 1526796