项目反应理论
马尔科夫蒙特卡洛
计算机科学
蒙特卡罗方法
贝叶斯概率
维数(图论)
考试(生物学)
机器学习
马尔可夫链
检验理论
人工智能
数据挖掘
统计
数学
心理测量学
生物
古生物学
纯数学
作者
Jimmy de la Torre,Richard J. Patz
标识
DOI:10.3102/10769986030003295
摘要
This article proposes a practical method that capitalizes on the availability of information from multiple tests measuring correlated abilities given in a single test administration. By simultaneously estimating different abilities with the use of a hierarchical Bayesian framework, more precise estimates for each ability dimension are obtained. The efficiency of the proposed method is most pronounced when highly correlated abilities are estimated from multiple short tests. Employing Markov chain Monte Carlo techniques allows for straightforward estimation of model parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI