旋量
物理
操作员(生物学)
本征函数
特征向量
数学物理
光谱(功能分析)
组合数学
泡利不相容原理
组分(热力学)
量子力学
数学
化学
基因
抑制因子
转录因子
生物化学
作者
Paulo V. C. Medeiros,Stepan S. Tsirkin,S. Stafström,Jonas Björk
标识
DOI:10.1103/physrevb.91.041116
摘要
We show that the spectral weights $W_{m\vec K}(\vec k)$ used for the unfolding of two-component spinor eigenstates $| {\psi_{m\vec K}^\mathrm{SC}} > = | \alpha > | {\psi_{m\vec{K}}^\mathrm{SC, \alpha}} > + | \beta > | {\psi_{m\vec{K}}^\mathrm{SC, \beta}} >$ can be decomposed as the sum of the partial spectral weights $W_{m\vec{K}}^{\mu}(\vec k)$ calculated for each component $\mu = \alpha, \beta$ independently, effortlessly turning a possibly complicated problem involving two coupled quantities into two independent problems of easy solution. Furthermore, we define the unfolding-density operator $\hat{\rho}_{\vec{K}}(\vec{k}_{i}; \, \varepsilon)$, which unfolds the primitive cell expectation values $\varphi^{pc}(\vec{k}; \varepsilon)$ of any arbitrary operator $\mathbf{\hat\varphi}$ according to $\varphi^{pc}(\vec{k}_{i}; \varepsilon) = \mathit{Tr}(\hat{\rho}_{\vec{K}}(\vec{k}_{i}; \, \varepsilon)\,\,\hat{\varphi})$. As a proof of concept, we apply the method to obtain the unfolded band structures, as well as the expectation values of the Pauli spin matrices, for prototypical physical systems described by two-component spinor eigenfunctions.
科研通智能强力驱动
Strongly Powered by AbleSci AI