胸腺基质淋巴细胞生成素
TLR3型
细胞因子
生物
内体
炎症
免疫学
分子生物学
细胞生物学
Toll样受体
先天免疫系统
免疫系统
细胞内
作者
Jenny Calvén,Yulyana Yudina,Oskar Hällgren,Gunilla Westergren‐Thorsson,Donna E. Davies,Angelica Brandelius,Lena Uller
摘要
Rhinovirus (RV)-induced chronic obstructive pulmonary disease (COPD) exacerbations exhibit TH(2)-like inflammation. We hypothesized that RV-infected bronchial epithelial cells (BEC) overproduce TH(2)-switching hub cytokine, thymic stromal lymphopoietin (TSLP) in COPD.Primary BEC from healthy (HBEC) and from COPD donors (COPD-BEC) were grown in 12-well plates, infected with RV16 (0.5-5 MOI) or stimulated with agonists for either toll-like receptor (TLR) 3 (dsRNA, 0.1-10 μg/ml) or RIG-I-like helicases (dsRNA-LyoVec, 0.1-10 μg/ml). Cytokine mRNA and protein were determined (RTqPCR; ELISA).dsRNA dose-dependently evoked cytokine gene overproduction of TSLP, CXCL8 and TNF-α in COPD-BEC compared to HBEC. This was confirmed using RV16 infection. IFN-β induction did not differ between COPD-BEC and HBEC. Endosomal TLR3 inhibition by chloroquine dose-dependently inhibited dsRNA-induced TSLP generation and reduced generation of CXCL8, TNF-α, and IFN-β. Stimulation of cytosolic viral sensors (RIG-I-like helicases) with dsRNA-LyoVec increased production of CXCL8, TNF-α, and IFN-β, but not TSLP.Endosomal TLR3-stimulation, by dsRNA or RV16, induces overproduction of TSLP in COPD-BEC. dsRNA- and RV-induced overproduction of TNF-α and CXCL8 involves endosomal TLR3 and cytosolic RIG-I-like helicases and so does the generation of IFN-β in COPD-BEC. RV16 and dsRNA-induced epithelial TSLP may contribute to pathogenic effects at exacerbations and development of COPD.
科研通智能强力驱动
Strongly Powered by AbleSci AI