TRPV1

脂毒素 化学 生物物理学 TRPM8型 TRPV1型 脱磷 离子通道 辣椒素 生物化学 磷酸化 瞬时受体电位通道 受体 生物 磷酸酶
作者
Stuart Bevan,Talisia Quallo,David A. Andersson
出处
期刊:Handbook of experimental pharmacology [Springer Science+Business Media]
卷期号:: 207-245 被引量:160
标识
DOI:10.1007/978-3-642-54215-2_9
摘要

TRPV1 is a well-characterised channel expressed by a subset of peripheral sensory neurons involved in pain sensation and also at a number of other neuronal and non-neuronal sites in the mammalian body. Functionally, TRPV1 acts as a sensor for noxious heat (greater than ~42 °C). It can also be activated by some endogenous lipid-derived molecules, acidic solutions (pH < 6.5) and some pungent chemicals and food ingredients such as capsaicin, as well as by toxins such as resiniferatoxin and vanillotoxins. Structurally, TRPV1 subunits have six transmembrane (TM) domains with intracellular N- (containing 6 ankyrin-like repeats) and C-termini and a pore region between TM5 and TM6 containing sites that are important for channel activation and ion selectivity. The N- and C- termini have residues and regions that are sites for phosphorylation/dephosphorylation and PI(4,5)P2 binding, which regulate TRPV1 sensitivity and membrane insertion. The channel has several interacting proteins, some of which (e.g. AKAP79/150) are important for TRPV1 phosphorylation. Four TRPV1 subunits form a non-selective, outwardly rectifying ion channel permeable to monovalent and divalent cations with a single-channel conductance of 50–100 pS. TRPV1 channel kinetics reveal multiple open and closed states, and several models for channel activation by voltage, ligand binding and temperature have been proposed. Studies with TRPV1 agonists and antagonists and Trpv1 −/− mice have suggested a role for TRPV1 in pain, thermoregulation and osmoregulation, as well as in cough and overactive bladder. TRPV1 antagonists have advanced to clinical trials where findings of drug-induced hyperthermia and loss of heat sensitivity have raised questions about the viability of this therapeutic approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hggyt发布了新的文献求助10
刚刚
科研木头人完成签到 ,获得积分10
1秒前
jtyt发布了新的文献求助10
2秒前
桀桀桀发布了新的文献求助10
2秒前
3秒前
3秒前
hellohtc发布了新的文献求助10
3秒前
英姑应助lvben采纳,获得10
4秒前
4秒前
我是老大应助Yu采纳,获得10
5秒前
5秒前
汉堡包应助abc123采纳,获得10
6秒前
Krismile完成签到,获得积分10
6秒前
隐形静芙发布了新的文献求助10
7秒前
123完成签到,获得积分10
7秒前
大橘为重应助夜莺采纳,获得10
8秒前
mmmmmMM发布了新的文献求助10
9秒前
燕小冷发布了新的文献求助10
9秒前
冬雪完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
13秒前
缓慢采枫完成签到,获得积分20
14秒前
yinruopeng应助Gurlstrian采纳,获得10
14秒前
14秒前
芍药完成签到 ,获得积分10
15秒前
lvben发布了新的文献求助10
16秒前
17秒前
Www完成签到,获得积分10
17秒前
科研通AI2S应助缓慢采枫采纳,获得10
18秒前
18秒前
Ashley完成签到,获得积分10
21秒前
小二郎应助沫荔采纳,获得10
22秒前
23秒前
24秒前
24秒前
执着夏山完成签到,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4399881
求助须知:如何正确求助?哪些是违规求助? 3887670
关于积分的说明 12100022
捐赠科研通 3531972
什么是DOI,文献DOI怎么找? 1938192
邀请新用户注册赠送积分活动 979134
科研通“疑难数据库(出版商)”最低求助积分说明 876374