Optimal design of robotic work-cell through hierarchical manipulability maximization

模拟退火 稳健性(进化) 计算机科学 遗传算法 机器人 机器人末端执行器 启发式 最大化 椭球体 模拟 数学优化 人工智能 算法 生物化学 数学 基因 操作系统 机器学习 物理 天文 化学
作者
Paolo Franceschi,Stefano Mutti,Nicola Pedrocchi
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:78: 102401-102401 被引量:3
标识
DOI:10.1016/j.rcim.2022.102401
摘要

The increasing requests for flexible robotic applications involving the rapid relocation of the robot manipulator, possibly mounted on a mobile base, imposes tolerance to imprecise positioning. The high manipulability of the nominally designed poses, i.e., the capacity to change the position and the orientation of a given robot joint configuration’s end-effector, is often considered a proxy for robustness to imprecise positioning. This work presents a method for choosing target end-effector poses to manipulate bulky objects in complex environments. The paper proposes a two-layer optimizer connected in cascade to maximize the manipulability and achieve reasonable computational time. First, using a genetic algorithm (GA) allows a global search for a satisfactory solution to the target poses of the task at the same time. Subsequently, the output of the GA becomes the initial guess for the simulated annealing (SA) algorithm, which locally maximizes each pose’s manipulability separately. The feasibility of the connecting trajectories and collisions are checked in both layers. Experiments show the method’s ability to find excellent solutions within a limited time, considering a complex problem involving manipulating large objects in a cluttered environment. The simulations of three working scenarios allowed testing of the proposed method. The final validation of the algorithm was on two relevant industrial use-cases: the manipulation of sidewalls and the manipulation of cargo panels inside an aircraft fuselage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙扬发布了新的文献求助10
1秒前
NexusExplorer应助哎呀妈呀采纳,获得10
2秒前
李健的小迷弟应助qiulong采纳,获得10
3秒前
Akim应助高分子采纳,获得10
3秒前
wyyp完成签到 ,获得积分10
3秒前
wiaa完成签到,获得积分10
5秒前
hooka发布了新的文献求助10
6秒前
NexusExplorer应助xu采纳,获得10
7秒前
小雒雒完成签到,获得积分20
8秒前
11秒前
Jay完成签到,获得积分10
11秒前
711moiii关注了科研通微信公众号
11秒前
孙扬完成签到,获得积分10
12秒前
桐桐应助123采纳,获得10
12秒前
15秒前
哎呀妈呀发布了新的文献求助10
16秒前
酷波er应助snowpie采纳,获得10
17秒前
hush完成签到,获得积分10
19秒前
酷炫的发带完成签到,获得积分10
20秒前
lily88发布了新的文献求助10
21秒前
hooka完成签到 ,获得积分10
24秒前
zhentg完成签到,获得积分10
25秒前
25秒前
zcj完成签到,获得积分10
25秒前
25秒前
26秒前
wakao完成签到,获得积分20
26秒前
DAYDAY完成签到 ,获得积分10
26秒前
27秒前
Li应助DKaiJu采纳,获得10
27秒前
满意的醉蝶完成签到,获得积分10
28秒前
梓七发布了新的文献求助50
30秒前
科研通AI5应助WUYONGSHUAI采纳,获得10
31秒前
龙梦发布了新的文献求助10
31秒前
雪酪芋泥球完成签到 ,获得积分10
31秒前
32秒前
adelalady发布了新的文献求助30
34秒前
qqy完成签到,获得积分10
35秒前
Orange应助Young采纳,获得10
37秒前
37秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799165
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321911
捐赠科研通 3061287
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445