Using machine learning to predict the density profiles of surface-densified wood based on cross-sectional images

卷积神经网络 人工神经网络 偏最小二乘回归 苏格兰松 回归 人工智能 曲面(拓扑) 过程(计算) 回归分析 线性回归 比例(比率) 均方误差 计算机科学 材料科学 模式识别(心理学) 生物系统 机器学习 数学 统计 几何学 物理 松属 操作系统 生物 量子力学 植物
作者
Benedikt Neyses,Alexander Scharf
出处
期刊:European Journal of Wood and Wood Products [Springer Nature]
卷期号:80 (5): 1121-1133 被引量:5
标识
DOI:10.1007/s00107-022-01826-2
摘要

Abstract Over the past decades, the surface densification of solid wood has received increased attention. However, the inhomogeneous density distribution in the densification direction might be a challenge with regard to process control within a large-scale production process, as the density profile governs many relevant properties of surface-densified wood. Currently, the measurement of density profiles relies on sensitive X-ray equipment and is difficult to integrate into an on-line process. Hence, in this study, three machine learning approaches were applied to predict the density profiles of surface-densified Scots pine specimens, only based on visual image acquisition—a technology that is ubiquitous in the wood industry: partial least squares (PLS) regression, artificial neural networks (ANN), and convolutional neural networks (CNN). The machine learning models were trained on images of the specimen cross-sections as input data, and X-ray density profiles as output data. There were 1850 observations, and the model performance was evaluated on external test sets. The models had mean absolute percentage errors of the predicted values between 9 and 18%; the CNN achieving the smallest error (9.24%). A deeper analysis of the data revealed that the ANN approach performed inconsistently between observations. PLS regression predicted the main density peak to a high accuracy but could not model other features. Only the CNN could reliably model the main density peak, wide growth rings, and the important region between the specimen surface and the main density peak. The ability of the models to generalise to untypical new data was improved by augmentation of the training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小蘑菇应助无奈安筠采纳,获得10
1秒前
失眠的血茗完成签到,获得积分10
1秒前
简单的大哥完成签到,获得积分10
2秒前
careS完成签到,获得积分10
2秒前
2秒前
一一应助boging采纳,获得10
3秒前
4秒前
xiao完成签到,获得积分10
5秒前
世界需要我完成签到,获得积分10
5秒前
joe55667788完成签到,获得积分20
5秒前
6秒前
隐形曼青应助星回二七采纳,获得10
6秒前
iiopp完成签到,获得积分10
6秒前
炙热紫发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
xia发布了新的文献求助10
7秒前
科研通AI6应助深情的采波采纳,获得10
7秒前
张真源完成签到,获得积分10
7秒前
玖拾发布了新的文献求助10
8秒前
发嗲的芷发布了新的文献求助10
8秒前
高大曼香应助文件撤销了驳回
8秒前
8秒前
Wen3197312602发布了新的文献求助10
8秒前
qrr发布了新的文献求助10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
Wind应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
李健应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
咚咚应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545991
求助须知:如何正确求助?哪些是违规求助? 4631933
关于积分的说明 14623692
捐赠科研通 4573623
什么是DOI,文献DOI怎么找? 2507694
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455637