Comparing Poor and Favorable Outcome Prediction With Machine Learning After Mechanical Thrombectomy in Acute Ischemic Stroke

改良兰金量表 医学 冲程(发动机) 内科学 结果(博弈论) 心脏病学 缺血性中风 缺血 机械工程 数理经济学 数学 工程类
作者
Matthias A. Mutke,Vince I. Madai,Adam Hilbert,Esra Zihni,Arne Potreck,Charlotte S. Weyland,Markus Möhlenbruch,Sabine Heiland,Peter A. Ringleb,Simon Nagel,Martin Bendszus,Dietmar Frey
出处
期刊:Frontiers in Neurology [Frontiers Media SA]
卷期号:13: 737667-737667 被引量:18
标识
DOI:10.3389/fneur.2022.737667
摘要

Background and Purpose Outcome prediction after mechanical thrombectomy (MT) in patients with acute ischemic stroke (AIS) and large vessel occlusion (LVO) is commonly performed by focusing on favorable outcome (modified Rankin Scale, mRS 0–2) after 3 months but poor outcome representing severe disability and mortality (mRS 5 and 6) might be of equal importance for clinical decision-making. Methods We retrospectively analyzed patients with AIS and LVO undergoing MT from 2009 to 2018. Prognostic variables were grouped in baseline clinical (A), MRI-derived variables including mismatch [apparent diffusion coefficient (ADC) and time-to-maximum (Tmax) lesion volume] (B), and variables reflecting speed and extent of reperfusion (C) [modified treatment in cerebral ischemia (mTICI) score and time from onset to mTICI]. Three different scenarios were analyzed: (1) baseline clinical parameters only, (2) baseline clinical and MRI-derived parameters, and (3) all baseline clinical, imaging-derived, and reperfusion-associated parameters. For each scenario, we assessed prediction for favorable and poor outcome with seven different machine learning algorithms. Results In 210 patients, prediction of favorable outcome was improved after including speed and extent of recanalization [highest area under the curve (AUC) 0.73] compared to using baseline clinical variables only (highest AUC 0.67). Prediction of poor outcome remained stable by using baseline clinical variables only (highest AUC 0.71) and did not improve further by additional variables. Prediction of favorable and poor outcomes was not improved by adding MR-mismatch variables. Most important baseline clinical variables for both outcomes were age, National Institutes of Health Stroke Scale, and premorbid mRS. Conclusions Our results suggest that a prediction of poor outcome after AIS and MT could be made based on clinical baseline variables only. Speed and extent of MT did improve prediction for a favorable outcome but is not relevant for poor outcome. An MR mismatch with small ischemic core and larger penumbral tissue showed no predictive importance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
艾文发布了新的文献求助10
刚刚
大舟Austin完成签到 ,获得积分10
1秒前
NexusExplorer应助冷静妙梦采纳,获得10
1秒前
my应助肥而不腻的羚羊采纳,获得30
1秒前
1秒前
2秒前
萧瑟秋风今又是完成签到 ,获得积分10
3秒前
今后应助合适苗条采纳,获得10
5秒前
gaili发布了新的文献求助10
5秒前
汤泽琪发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
无奈凉面完成签到,获得积分10
8秒前
chengxiping发布了新的文献求助10
8秒前
8秒前
安详忆雪完成签到 ,获得积分10
8秒前
xyc完成签到 ,获得积分10
10秒前
wwww完成签到,获得积分10
10秒前
李子园完成签到,获得积分10
11秒前
高高友桃发布了新的文献求助10
12秒前
搜集达人应助酷炫的忆山采纳,获得10
12秒前
UHPC发布了新的文献求助10
12秒前
chengxiping完成签到,获得积分10
16秒前
武大聪明丶完成签到,获得积分10
19秒前
汉堡包应助mikasa采纳,获得10
19秒前
20秒前
bj发布了新的文献求助10
22秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
CipherSage应助科研通管家采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
美满的萝应助科研通管家采纳,获得10
23秒前
Smar_zcl应助科研通管家采纳,获得150
23秒前
浮游应助科研通管家采纳,获得10
24秒前
lalala应助科研通管家采纳,获得20
24秒前
changping应助科研通管家采纳,获得150
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306248
求助须知:如何正确求助?哪些是违规求助? 4452100
关于积分的说明 13853781
捐赠科研通 4339569
什么是DOI,文献DOI怎么找? 2382696
邀请新用户注册赠送积分活动 1377615
关于科研通互助平台的介绍 1345210