Evolutionary neural architecture search based on evaluation correction and functional units

计算机科学 渡线 人工神经网络 进化算法 水准点(测量) 人工智能 选择(遗传算法) 网络体系结构 机器学习 建筑 计算机网络 大地测量学 艺术 视觉艺术 地理
作者
Ronghua Shang,Songling Zhu,Jinhong Ren,Hangcheng Liu,Licheng Jiao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:251: 109206-109206 被引量:6
标识
DOI:10.1016/j.knosys.2022.109206
摘要

Neural architecture search (NAS) has been a great success in the automated design of deep neural networks. However, neural architecture search using evolutionary algorithms is challenging due to the diverse structure of neural networks and the difficulty in performance evaluation. To this end, this paper proposes an evolutionary neural architecture search algorithm (called EF-ENAS) based on evaluation corrections and functional units. First, a mating selection operation based on evaluation correction is developed, which can help EF-ENAS discriminate high-performance network architectures and reduce the harmful effects of low fidelity accuracy evaluation methods. Then, a functional unit-based network architecture crossover operation is designed, which divides the neural network into different functional units for crossover and protects valuable network architectures from destruction. Finally, the idea of species protection is introduced into the traditional environmental selection operation and a species protection-based environmental selection operation is designed, which can improve the diversity of network architectures in a population. The EF-ENAS is tested on ten benchmark datasets with varying complexities. In addition, the proposed algorithm is compared with 44 state-of-the-art algorithms, including DARTS, EvoCNN, CNN-GA, AE-CNN, etc. The experimental results show that the proposed algorithm1 can automatically design neural networks and perform better.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迪迦完成签到,获得积分20
刚刚
2秒前
领导范儿应助小太阳采纳,获得10
2秒前
珈蓝完成签到,获得积分10
2秒前
5秒前
han发布了新的文献求助10
6秒前
大模型应助lyu采纳,获得10
6秒前
张博完成签到,获得积分20
7秒前
yujier应助Maestro_S采纳,获得10
8秒前
深情安青应助Bruce采纳,获得10
9秒前
13秒前
13秒前
15秒前
Bruce完成签到,获得积分20
16秒前
16秒前
科研通AI6.2应助于富强采纳,获得10
18秒前
燃之一手发布了新的文献求助10
18秒前
Jiang发布了新的文献求助10
19秒前
19秒前
瓜瓜发布了新的文献求助10
20秒前
22秒前
22秒前
Ava应助陈幡采纳,获得10
23秒前
han完成签到,获得积分10
23秒前
luo发布了新的文献求助10
25秒前
kathy完成签到,获得积分10
26秒前
活力惜寒发布了新的文献求助10
27秒前
剑锋挑月完成签到 ,获得积分10
27秒前
酷波er应助lkk采纳,获得10
28秒前
shining完成签到,获得积分10
28秒前
28秒前
燃之一手完成签到,获得积分10
30秒前
无花果应助Moon采纳,获得10
33秒前
Lucas应助Hmbb采纳,获得10
33秒前
33秒前
eureka发布了新的文献求助10
35秒前
传奇3应助Scc采纳,获得10
37秒前
小米发布了新的文献求助10
38秒前
活力惜寒完成签到,获得积分20
38秒前
zzz完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868560
求助须知:如何正确求助?哪些是违规求助? 6442890
关于积分的说明 15658682
捐赠科研通 4984020
什么是DOI,文献DOI怎么找? 2687773
邀请新用户注册赠送积分活动 1630343
关于科研通互助平台的介绍 1588463