Deep learning-based national scale soil organic carbon mapping with Sentinel-3 data

均方误差 深度学习 遥感 人工神经网络 支持向量机 比例(比率) 随机森林 计算机科学 人工智能 机器学习 环境科学 数学 统计 地图学 地理
作者
Omosalewa Odebiri,Onisimo Mutanga,John Odindi
出处
期刊:Geoderma [Elsevier]
卷期号:411: 115695-115695 被引量:69
标识
DOI:10.1016/j.geoderma.2022.115695
摘要

Mapping of soil organic carbon (SOC) at the regional level is critical for climate change policy and the mitigation of its adverse effects. However, reliable SOC estimates particularly over a large extent remains a major challenge due to among others limited sample points, quality of simulation data and the algorithm adopted. Remote sensing (RS) strategies have emerged as a suitable alternative to field and laboratory SOC determination, especially at large spatial extent. The use of Sentinel-3 sensor, the latest of the Sentinel series is minimal and has not been fully developed, despite its impressive attributes that include high spectral-temporal resolution and large coverage. Compared to linear and classical ML models, deep learning (DL) models offer a considerable improvement in data analysis due to their ability to extract more representative features and identify complex spatial patterns associated with big data. Yet, there is paucity in literature on the application of dl-based remote sensing strategies for SOC prediction. Consequently, this study adopted a deep neural network (DNN) to predict SOC at a national scale, using Sentinel-3 image, and compared the results with random forest (RF), support vector machine (SVM) and artificial neural network (ANN) models. The models were trained based on 10-fold cross-validation with 1936 soil samples and 31 predictors. The DNN model generated the best result with a root mean square error (RMSE) of 10.35 t/ha (26 % of the mean), followed by RF (RMSE = 11.2 t/ha), ANN (RMSE = 11.6 t/ha) and SVM (RMSE = 13.6 t/ha). The analytical prowess of the DNN, together with its ability to handle big data by learning patterns through a series of hidden layers (10) to draw conclusions, gives it an edge over other classical ML models. The study concluded that the DNN model with Sentinel-3 data is promising and provides an effective framework for continuous national level SOC modelling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋不尤发布了新的文献求助360
1秒前
1秒前
cch12121发布了新的文献求助10
1秒前
守护星星完成签到,获得积分10
1秒前
1秒前
MM发布了新的文献求助10
1秒前
鳄鱼蛋完成签到,获得积分10
2秒前
ccc发布了新的文献求助10
2秒前
太阳发布了新的文献求助10
2秒前
科研通AI6应助小婷婷采纳,获得30
2秒前
3秒前
zjjjjjjjjj完成签到,获得积分20
3秒前
re6irth完成签到,获得积分10
3秒前
赘婿应助lyra采纳,获得10
3秒前
volca完成签到,获得积分10
3秒前
风清扬发布了新的文献求助20
4秒前
TRY发布了新的文献求助10
4秒前
4秒前
斯文败类应助外向的盼烟采纳,获得50
4秒前
李9999发布了新的文献求助10
4秒前
鳄鱼蛋发布了新的文献求助10
5秒前
琳琳完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
田様应助科研采纳,获得10
6秒前
项听蓉发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
无名完成签到 ,获得积分10
7秒前
听白完成签到 ,获得积分10
7秒前
wzy完成签到 ,获得积分10
7秒前
8秒前
8秒前
gy发布了新的文献求助10
8秒前
9秒前
小蘑菇应助个性的皮带采纳,获得10
9秒前
传奇3应助屈子洋采纳,获得10
9秒前
所所应助朴素小鸟胃采纳,获得10
10秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5446570
求助须知:如何正确求助?哪些是违规求助? 4555569
关于积分的说明 14252696
捐赠科研通 4478056
什么是DOI,文献DOI怎么找? 2453484
邀请新用户注册赠送积分活动 1444275
关于科研通互助平台的介绍 1420353