亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Fully Automated Multimodal MRI-based Multi-task Learning for Glioma Segmentation and IDH Genotyping

计算机科学 人工智能 卷积神经网络 分割 深度学习 多任务学习 编码器 机器学习 分类器(UML) 模式识别(心理学)
作者
Jianhong Cheng,Jin Liu,Hulin Kuang,Jianxin Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2022.3142321
摘要

The accurate prediction of isocitrate dehydrogenase (IDH) mutation and glioma segmentation are important tasks for computer-aided diagnosis using preoperative multimodal magnetic resonance imaging (MRI). The two tasks are ongoing challenges due to the significant inter-tumor and intra-tumor heterogeneity. The existing methods to address them are mostly based on single-task approaches without considering the correlation between the two tasks. In addition, the acquisition of IDH genetic labels is expensive and costly, resulting in a limited number of IDH mutation data for modeling. To comprehensively address these problems, we propose a fully automated multimodal MRI-based multi-task learning framework for simultaneous glioma segmentation and IDH genotyping. Specifically, the task correlation and heterogeneity are tackled with a hybrid CNN-Transformer encoder that consists of a convolutional neural network and a transformer to extract the shared spatial and global information learned from a decoder for glioma segmentation and a multi-scale classifier for IDH genotyping. Then, a multi-task learning loss is designed to balance the two tasks by combining the segmentation and classification loss functions with uncertain weights. Finally, an uncertainty-aware pseudo-label selection is proposed to generate IDH pseudo-labels from larger unlabeled data for improving the accuracy of IDH genotyping by using semi-supervised learning. We evaluate our method on a multi-institutional public dataset. Experimental results show that our proposed multi-task network achieves promising performance and outperforms the single-task learning counterparts and other existing state-of-the-art methods. With the introduction of unlabeled data, the semi-supervised multi-task learning framework further improves the performance of glioma segmentation and IDH genotyping. The source codes of our framework are publicly available at https://github.com/miacsu/MTTU-Net.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
38秒前
刘睿涵完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Jason发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
present发布了新的文献求助10
1分钟前
2分钟前
2分钟前
万能图书馆应助present采纳,获得10
2分钟前
jjj发布了新的文献求助10
2分钟前
2分钟前
长发飘飘发布了新的文献求助10
2分钟前
慕青应助jjj采纳,获得30
2分钟前
所所应助长发飘飘采纳,获得10
2分钟前
斯文败类应助violet兰采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
coco发布了新的文献求助30
2分钟前
wns驳回了大模型应助
3分钟前
3分钟前
研友_ZG4ml8完成签到 ,获得积分0
3分钟前
科研通AI5应助awww采纳,获得10
3分钟前
ffff完成签到 ,获得积分10
3分钟前
3分钟前
awww发布了新的文献求助10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
wns发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
violet兰完成签到,获得积分20
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788267
求助须知:如何正确求助?哪些是违规求助? 3333713
关于积分的说明 10263130
捐赠科研通 3049568
什么是DOI,文献DOI怎么找? 1673634
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760511