Long-Term Traffic Forecast Using Neural Network and Seasonal Autoregressive Integrated Moving Average: Case of a Container Port

端口(电路理论) 标杆管理 容器(类型理论) 自回归积分移动平均 运筹学 运输工程 人工神经网络 期限(时间) 排队 计算机科学 工程类 时间序列 业务 机械工程 物理 营销 量子力学 机器学习 电气工程 程序设计语言
作者
Negar Sadeghi Gargari,Roozbeh Panahi,Hassan Akbari,Adolf K.Y. Ng
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2676 (8): 236-252
标识
DOI:10.1177/03611981221083311
摘要

Long-term insight into maritime traffic is critical for port authorities, logistics companies, and port operators to proactively formulate suitable policies, develop strategic plans, allocate budget, and preserve and improve competitiveness. Forecasting freight rate is a spotlight in port traffic literature, but relatively little research has been directed at forecasting long-term vessel traffic trends. Based on forecast long-term freight rate input provided by the recent 10-year strategic planning of the port of Rajaee, the largest port of Iran, the paper implements seasonal autoregressive integrated moving average (SARIMA) and neural network (NN) models to forecast its container vessel traffic between 2020 and 2025. A database consisting of monthly container traffic data for this port from 1999 to 2019 is utilized. The comparison between the two forecasting models is fulfilled by benchmarking the naïve method. The results reveal the superiority of the NN model over SARIMA in this practice. Considering NN model outputs, the port should expect a significant increase in Panamax and Over-Panamax vessels in the future, and, if not timely addressed, this would result in a systemic queue in the port of Rajaee. That said, the approach can be implemented in port planning and design to avoid under- or over-estimations in such capital-intensive projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dustomb完成签到,获得积分10
刚刚
光轮2000发布了新的文献求助10
2秒前
淡定芷容完成签到,获得积分10
2秒前
有魅力的傲蕾完成签到 ,获得积分10
3秒前
傢誠发布了新的文献求助10
6秒前
7秒前
7秒前
Jackcaosky发布了新的文献求助10
7秒前
7秒前
小猫爱吃鱼饼完成签到,获得积分10
8秒前
11秒前
ss完成签到,获得积分10
11秒前
烟花应助琪玛苏采纳,获得10
11秒前
共享精神应助一一采纳,获得10
12秒前
12秒前
12秒前
13秒前
huihui完成签到,获得积分10
13秒前
13秒前
li发布了新的文献求助10
13秒前
暮桉完成签到,获得积分10
13秒前
搞怪远侵完成签到,获得积分10
13秒前
14秒前
Buoyant发布了新的文献求助10
17秒前
toto发布了新的文献求助10
18秒前
汉堡包应助lll采纳,获得10
19秒前
20秒前
真实的小伙完成签到,获得积分10
20秒前
21秒前
无花果应助YP_024采纳,获得30
22秒前
23秒前
23秒前
24秒前
一一发布了新的文献求助10
24秒前
hzx完成签到,获得积分20
24秒前
动漫大师发布了新的文献求助10
25秒前
27秒前
舒冰完成签到,获得积分10
27秒前
琪玛苏发布了新的文献求助10
27秒前
sang发布了新的文献求助10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
Effects of Receptive Music Therapy Combined with Virtual Reality on Prevalent Symptoms in Patients with Advanced Cancer 282
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811300
求助须知:如何正确求助?哪些是违规求助? 3355715
关于积分的说明 10377349
捐赠科研通 3072493
什么是DOI,文献DOI怎么找? 1687627
邀请新用户注册赠送积分活动 811700
科研通“疑难数据库(出版商)”最低求助积分说明 766762