Effect of nanowire conductive transfer on the performance of batch‐microbial fuel cells

舍瓦内拉 微生物燃料电池 阳极 阴极 希瓦氏菌属 电子转移 材料科学 纳米线 化学工程 电化学 化学 电极 导电体 电子传输链 纳米技术 细菌 复合材料 生物化学 生物 光化学 物理化学 工程类 遗传学
作者
Chin‐Tsan Wang,Tzu‐Hsuan Lan,Aristotle T. Ubando,Wen‐Tong Chong,Alvin B. Culaba,Yung‐Chin Yang
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (5): 6919-6928 被引量:1
标识
DOI:10.1002/er.7568
摘要

Microbial fuel cells (MFCs) are a promising technology that uses microorganisms to simultaneously generate bioelectricity while treating wastewater. To further improve the performance of the MFC, it is essential to understand and evaluate the electron transfer mechanism. However, redesigning the electron transfer mechanism of MFCs through an experimental approach is costly and time-consuming. Hence, in this study, a numerical modeling approach is implemented through the Nernst-Monod kinetic equation, which is validated by experimental results. A nanowire conductive transferring pathway is considered between the microorganisms and anode electrodes of a batch-type MFC. Moreover, two types of bacteria are utilized such as the Shewanella oneidensis MR-1 and Shewanella putrefacient with substrate concentrations of 0.5 M sodium lactate. The results have shown that the limiting current density of the MFC from the computational model is 1514 mA m−2. On the other hand, the current density from the experimental approach for Shewanella oneidensis MR-1 is 497 mA m−2 while for Shewanella putrefacient is 140 mA m−2. The anode activation loss of 491 Ω is lower than the cathode activation loss of 643 Ω, which indicates the relative influence of the cathode activation loss on the bioelectricity generation of the MFC. In addition, the results revealed that the nanowire electron transfer mechanism in the anode biofilm was less affected by the concentration losses. This then indicates that the physical mechanism of the nanowire electron transfer can be effectively used to investigate the batch-type MFCs. In turn, the results of this study will contribute to the development of an improved MFC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChemMa发布了新的文献求助10
1秒前
1秒前
乐乐应助ykl采纳,获得10
1秒前
月浅发布了新的文献求助10
1秒前
2秒前
芬芬完成签到 ,获得积分10
2秒前
所所应助Daria采纳,获得10
2秒前
sevenseven完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
myn1990完成签到,获得积分20
6秒前
小马甲应助可爱寄松采纳,获得10
6秒前
胡萝卜完成签到 ,获得积分10
7秒前
7秒前
崽猪可肥完成签到,获得积分10
7秒前
10秒前
wangle_17发布了新的文献求助10
10秒前
jasonlee发布了新的文献求助10
11秒前
科研小道完成签到,获得积分20
12秒前
锂锌发布了新的文献求助10
12秒前
happyou完成签到,获得积分10
12秒前
13秒前
13秒前
胡萝卜发布了新的文献求助10
15秒前
916应助牛默默采纳,获得10
17秒前
科研小道发布了新的文献求助10
17秒前
17秒前
zjq完成签到,获得积分10
18秒前
yyfdqms完成签到,获得积分10
19秒前
星辰大海应助激昂的白凡采纳,获得10
19秒前
SciGPT应助橘猫采纳,获得10
21秒前
朱博超发布了新的文献求助40
22秒前
霍嚯嚯嚯关注了科研通微信公众号
22秒前
23秒前
25秒前
阿刁完成签到,获得积分10
27秒前
小二郎应助xulin采纳,获得10
27秒前
粥虾米完成签到,获得积分20
27秒前
28秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd Edition 4000
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3926910
求助须知:如何正确求助?哪些是违规求助? 3471578
关于积分的说明 10968980
捐赠科研通 3201439
什么是DOI,文献DOI怎么找? 1768790
邀请新用户注册赠送积分活动 857689
科研通“疑难数据库(出版商)”最低求助积分说明 796109