Automated Cerebral Vessel Segmentation of Magnetic Resonance Imaging in Patients with Intracranial Atherosclerotic Diseases

磁共振成像 医学 分割 放射科 医学影像学 核磁共振 计算机科学 人工智能 物理
作者
Tatsat R. Patel,Nándor Pintér,Seyyed Mostafa Mousavi Janbeh Sarayi,Adnan H. Siddiqui,Vincent M. Tutino,Hamidreza Rajabzadeh-Oghaz
标识
DOI:10.1109/embc46164.2021.9630626
摘要

Time-of-flight (TOF) magnetic resonance angiography is a non-invasive imaging modality for the diagnosis of intracranial atherosclerotic diseases (ICAD). Evaluation of the degree of the stenosis and status of posterior and anterior communicating arteries to supply enough blood flow to the distal arteries is very critical, which requires accurate evaluation of arteries. Recently, deep-learning methods have been firmly established as a robust tool in medical image segmentation, which has been resulted in developing multiple customized algorithms. For instance, BRAVE-NET, a context-based successor of U-Net—has shown promising results in MRA cerebrovascular segmentation. Another widely used context-based 3D CNN—DeepMedic—has been shown to outperform U-Net in cerebrovascular segmentation of 3D digital subtraction angiography. In this study, we aim to train and compare the two state-of-the-art deep-learning networks, BRAVE-NET and DeepMedic, for automated and reliable brain vessel segmentation from TOF-MRA images in ICAD patients. Using specially labeled data—labeled on TOF MRA and corrected on high-resolution black-blood MRI, of 51 patients with ICAD due to severe stenosis, we trained and tested both models. On an independent test dataset of 11 cases, DeepMedic slightly outperformed BRAVE-NET in terms of DSC (0.905±0.012 vs 0.893±0.015, p: 0.539) and 95HD (0.754±0.223 vs 1.768±0.609, p: 0.134), and significantly outperformed BRAVE-NET in terms of Recall (0.940±0.023 vs 0.855±0.030, p: 0.036). Qualitative assessment confirmed the superiority of DeepMedic in capturing the small and distal arteries. While BRAVE-NET consistently reported higher precision, DeepMedic generally overpredicted and could better visualize the smaller and distal arteries. In future studies, ensemble models that can leverage best of both should be developed and tested on larger datasets.Clinical Relevance— This study helps elevate the state-of-the-art for brain vessel segmentation from non-invasive MRA, which could accelerate the translation of vessel status-based biomarkers into the clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
yingyuan发布了新的文献求助10
4秒前
某只橘猫君完成签到,获得积分10
4秒前
胖心关注了科研通微信公众号
4秒前
5秒前
芦荻夜发布了新的文献求助10
6秒前
6秒前
Charity完成签到,获得积分10
7秒前
7秒前
7秒前
真理完成签到,获得积分10
8秒前
Sun发布了新的文献求助10
8秒前
合适磬完成签到,获得积分10
8秒前
9秒前
橘子发布了新的文献求助10
10秒前
猇会不会完成签到,获得积分20
11秒前
12秒前
CodeCraft应助冷傲半邪采纳,获得30
12秒前
Dr.Yang发布了新的文献求助10
12秒前
初夏完成签到,获得积分10
12秒前
合适磬发布了新的文献求助10
12秒前
小鱼干完成签到,获得积分20
12秒前
零知识完成签到 ,获得积分10
14秒前
14秒前
机灵山河发布了新的文献求助30
14秒前
684654684发布了新的文献求助10
16秒前
雨夜聆风发布了新的文献求助10
16秒前
科研通AI5应助饿得咕咕地采纳,获得30
16秒前
追风完成签到,获得积分10
18秒前
webel完成签到,获得积分10
20秒前
20秒前
武雨寒发布了新的文献求助10
21秒前
香蕉觅云应助xiaoze采纳,获得10
21秒前
jmg03完成签到,获得积分10
21秒前
当当完成签到,获得积分10
22秒前
23秒前
深情安青应助橘子采纳,获得10
24秒前
25秒前
26秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825325
求助须知:如何正确求助?哪些是违规求助? 3367626
关于积分的说明 10446791
捐赠科研通 3086963
什么是DOI,文献DOI怎么找? 1698354
邀请新用户注册赠送积分活动 816769
科研通“疑难数据库(出版商)”最低求助积分说明 769951