Learning in Sinusoidal Spaces With Physics-Informed Neural Networks

初始化 人工神经网络 梯度下降 偏微分方程 计算机科学 航程(航空) 数学优化 数学 应用数学 人工智能 数学分析 复合材料 材料科学 程序设计语言
作者
Jian Cheng Wong,Chin Chun Ooi,Abhishek Gupta,Yew-Soon Ong
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (3): 985-1000 被引量:51
标识
DOI:10.1109/tai.2022.3192362
摘要

A physics-informed neural network (PINN) uses physics-augmented loss functions, e.g., incorporating the residual term from governing partial differential equations (PDEs), to ensure its output is consistent with fundamental physics laws. However, it turns out to be difficult to train an accurate PINN model for many problems in practice. In this paper, we present a novel perspective of the merits of learning in sinusoidal spaces with PINNs. By analyzing behavior at model initialization, we first show that a PINN of increasing expressiveness induces an initial bias around flat output functions. Notably, this initial solution can be very close to satisfying many physics PDEs, i.e., falling into a local minimum of the PINN loss that only minimizes PDE residuals, while still being far from the true solution that jointly minimizes PDE residuals and the initial and/or boundary conditions. It is difficult for gradient descent optimization to escape from such a local minimum trap, often causing the training to stall. We then prove that the sinusoidal mapping of inputs, in an architecture we label as sf-PINN, is effective to increase input gradient variability, thus avoiding being trapped in such deceptive local minimum. The level of variability can be effectively modulated to match high-frequency patterns in the problem at hand. A key facet of this paper is the comprehensive empirical study that demonstrates the efficacy of learning in sinusoidal spaces with PINNs for a wide range of forward and inverse modelling problems spanning multiple physics domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助xijq采纳,获得10
1秒前
112233发布了新的文献求助10
1秒前
xixi发布了新的文献求助10
1秒前
妮妮完成签到 ,获得积分10
2秒前
大模型应助景飞丹采纳,获得10
2秒前
Jasper应助北冰石采纳,获得10
5秒前
踏实的怜菡完成签到 ,获得积分10
5秒前
丘比特应助背后乌冬面采纳,获得10
6秒前
谨慎采白完成签到 ,获得积分10
9秒前
10秒前
wangsiyuan完成签到 ,获得积分10
11秒前
Lucas应助体贴坤坤采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
安好完成签到,获得积分20
12秒前
14秒前
15秒前
关关完成签到 ,获得积分10
15秒前
景飞丹发布了新的文献求助10
15秒前
16秒前
18秒前
研友_n0gowL完成签到,获得积分10
19秒前
flyindancewei发布了新的文献求助10
19秒前
qwe1108完成签到 ,获得积分10
20秒前
冰魂应助此然采纳,获得10
20秒前
科研通AI2S应助Nicole采纳,获得10
20秒前
大狒狒发布了新的文献求助10
21秒前
21秒前
科研通AI5应助安好采纳,获得10
21秒前
SciGPT应助妖妖采纳,获得10
22秒前
hongyintao发布了新的文献求助10
22秒前
虚幻小丸子完成签到 ,获得积分10
22秒前
艾妮吗发布了新的文献求助10
22秒前
无花果应助可靠的0采纳,获得10
22秒前
anna521212完成签到 ,获得积分10
23秒前
轻松的雨竹完成签到 ,获得积分10
26秒前
26秒前
27秒前
27秒前
大狒狒完成签到,获得积分10
27秒前
29秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Building Quantum Computers 1078
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862650
求助须知:如何正确求助?哪些是违规求助? 3405163
关于积分的说明 10643563
捐赠科研通 3128648
什么是DOI,文献DOI怎么找? 1725356
邀请新用户注册赠送积分活动 831000
科研通“疑难数据库(出版商)”最低求助积分说明 779516