系统性风险
机器学习
杠杆(统计)
计算机科学
人工智能
预测能力
一般化
经济
数学
金融危机
认识论
数学分析
哲学
宏观经济学
作者
Ruicheng Liu,Chi Seng Pun
标识
DOI:10.1016/j.jbankfin.2022.106416
摘要
This paper explores ways to improve the existing systemic risk measures by incorporating machine learning algorithms into the measurement. We aim to overcome the shortcomings of existing methods that rely on restricted modeling and are difficult to tap into various data resources. To this end, this paper unifies a dynamic quantification framework for systemic risk and links it to a two-step supervised learning problem, which allows for hierarchical structure of the systemic event and the return dependence. We leverage the generalization and predictive powers of machine learning to statistically model the tail events and the co-movements of the equity returns during the shocks to the macro-economy. Our results show that most machine learning algorithms enhance the systemic risk measure's predictive power. Numerous comparative and sensitivity backtesting studies for United States and Hong Kong markets are conducted, from which we recommend the best machine learning algorithm for systemic risk measurement.
科研通智能强力驱动
Strongly Powered by AbleSci AI