Nowhere to Hide: Online Rumor Detection Based on Retweeting Graph Neural Networks

计算机科学 谣言 树(集合论) 图形 人工智能 节点(物理) 人工神经网络 深度学习 机器学习 数据挖掘 理论计算机科学 政治学 工程类 结构工程 数学分析 公共关系 数学
作者
Bo Liu,Xiangguo Sun,Qing Meng,Xinyan Yang,Yang Lee,Jiuxin Cao,Junzhou Luo,Roy Ka-Wei Lee
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 4887-4898 被引量:29
标识
DOI:10.1109/tnnls.2022.3161697
摘要

Online rumor detection is crucial for a healthier online environment. Traditional methods mainly rely on content understanding. However, these contents can be easily adjusted to avoid such supervision and are insufficient to improve the detection result. Compared with the content, information propagation patterns are more informative to support further performance promotion. Unfortunately, learning the propagation patterns is difficult, since the retweeting tree is more topologically complicated than linear sequences or binary trees. In light of this, we propose a novel rumor detection framework based on structure-aware retweeting graph neural networks. To capture the propagation patterns, we first design a novel conversion method to transform the complex retweeting tree as more tractable binary tree without losing the reconstruction information. Then, we serialize the retweeting tree as a corpus of meta-tree paths, where each meta-tree can preserve a basic substructure. A deep neural network is then designed to integrate all meta-trees and to generate the global structural embeddings. Furthermore, we propose to integrate content, users, and propagation patterns to enhance more reliable performance. To this end, we propose a novel self-attention-based retweeting neural network to learn individual features from both content and users. We then fuse the node-level features with our global structural embeddings via a mutual attention unit. In this way, we can generate more comprehensive representations for rumor detection. Extensive evaluations on two real-world datasets show remarkable superiorities of our model compared with existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博修发布了新的文献求助10
刚刚
刚刚
兴奋柜子完成签到,获得积分10
1秒前
3秒前
奋斗的绝悟完成签到,获得积分10
3秒前
4秒前
hahahah发布了新的文献求助10
4秒前
顾志成发布了新的文献求助10
4秒前
vadzdsgwe4g发布了新的文献求助20
5秒前
小周发布了新的文献求助10
5秒前
科研通AI2S应助猪猪hero采纳,获得10
6秒前
7秒前
852应助博修采纳,获得10
8秒前
zhanyuji发布了新的文献求助10
8秒前
Shirley Lv发布了新的文献求助10
9秒前
传奇3应助sgfiii采纳,获得30
10秒前
搜集达人应助深藏blue采纳,获得10
10秒前
高小航完成签到,获得积分10
11秒前
Alane发布了新的文献求助10
11秒前
shangx发布了新的文献求助10
11秒前
丑丑虎发布了新的文献求助10
12秒前
12秒前
JamesPei应助研友_LjDyNZ采纳,获得10
12秒前
13秒前
15秒前
小蘑菇应助兴奋的一凤采纳,获得10
16秒前
猪猪hero发布了新的文献求助10
17秒前
18秒前
21秒前
322628完成签到,获得积分10
21秒前
liuliu应助白昼采纳,获得20
21秒前
21秒前
22秒前
Jasper应助小小莫采纳,获得10
22秒前
充电宝应助优雅的水壶采纳,获得10
22秒前
星辰大海应助顾志成采纳,获得10
24秒前
是哇哦完成签到,获得积分20
24秒前
25秒前
25秒前
彭于晏应助风中的安珊采纳,获得10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795197
求助须知:如何正确求助?哪些是违规求助? 3340150
关于积分的说明 10299013
捐赠科研通 3056688
什么是DOI,文献DOI怎么找? 1677141
邀请新用户注册赠送积分活动 805224
科研通“疑难数据库(出版商)”最低求助积分说明 762397