Effect of water film evaporation on the shale gas transmission in inorganic nanopores under viscosity

纳米孔 蒸发 油页岩 粘度 水运 化学工程 化学 材料科学 水流 纳米技术 热力学 复合材料 环境工程 地质学 环境科学 古生物学 物理 工程类
作者
Haoyi Wang,Weihong Peng,Liangyu Hu,Wei Zhang
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:160 (13)
标识
DOI:10.1063/5.0195708
摘要

Shale gas reservoirs generally have ultra-low water saturation, and the water in reservoirs is closely bound to the walls of inorganic nanopores, forming a water film structure on the hydrophilic surface. When shale gas enters the inorganic nanopores, the water films in the inorganic pores will be removed by evaporation instead of being driven away by the gas, which increases the difficulty of predicting production during shale gas extraction. Based on molecular dynamics simulations, a water film evaporation model is proposed, considering the evaporation of water films during shale gas transport and the influence of water film evaporation on the shale gas transport mechanism. The Green–Kubo method is employed to calculate the viscosity of the water film. The evaporation flux of the water film under the influence of viscosity is discussed in the evaporation model. The transport mechanisms of shale gas in nanopores and the effect of water film evaporation on shale gas transport mechanisms are analyzed in detail. The result indicates that the water films in the inorganic nanopores are constrained on the hydrophilic surface, and the viscosity normal to the surface of the water film of 4 Å is 0.005 26 Pa⋅S, which is 6.12 times the reference value of viscosity at 298 K. In the process of water film evaporation, the evaporation flux of the water film is influenced by viscosity. In the study of the shale gas transport mechanism, water films in inorganic nanopores can hinder the surface diffusion of the methane molecules adsorbed on boundary and significantly reduce the mass flux of shale gas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助meizi采纳,获得10
刚刚
Dada应助酱啊油采纳,获得10
刚刚
好好发布了新的文献求助10
1秒前
2秒前
kk完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
含蓄戾完成签到 ,获得积分10
4秒前
彩色的荔枝完成签到 ,获得积分10
5秒前
7秒前
Chimmy完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
jingdaitianxiang完成签到 ,获得积分10
8秒前
粗暴的遥完成签到,获得积分10
9秒前
雨霧雲发布了新的文献求助10
9秒前
寒冷夜白完成签到,获得积分10
10秒前
10秒前
Owen应助carly采纳,获得20
11秒前
打打应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
13秒前
雨霧雲发布了新的文献求助10
14秒前
tofms完成签到,获得积分10
14秒前
Billy完成签到,获得积分10
14秒前
内向的台灯完成签到,获得积分10
14秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954647
求助须知:如何正确求助?哪些是违规求助? 3500801
关于积分的说明 11101075
捐赠科研通 3231264
什么是DOI,文献DOI怎么找? 1786399
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751