Comprehensive machine learning boosts structure-based virtual screening for PARP1 inhibitors

虚拟筛选 PARP1 计算机科学 人工智能 机器学习 计算生物学 生物 生物信息学 药物发现 遗传学 聚合酶 基因 聚ADP核糖聚合酶
作者
Klaudia Caba,Viet‐Khoa Tran‐Nguyen,Taufiq Rahman,Pedro J. Ballester
标识
DOI:10.1101/2024.03.15.585277
摘要

Abstract Poly ADP-ribose polymerase 1 (PARP1) is an attractive therapeutic target for cancer treatment. Machine-learning scoring functions constitute a promising approach to discovering novel PARP1 inhibitors. Cutting-edge PARP1-specific machine-learning scoring functions were investigated using semi-synthetic training data from docking activity-labelled molecules: known PARP1 inhibitors, hard-to-discriminate decoys property-matched to them with generative graph neural networks and confirmed inactives. We further made test sets harder by including only molecules dissimilar to those in the training set. Comprehensive analysis of these datasets using five supervised learning algorithms, and protein-ligand fingerprints extracted from docking poses and ligand only features revealed two highly predictive scoring functions. The PARP1-specific support vector machine-based regressor, when employing PLEC fingerprints, achieved a high Normalized Enrichment Factor at the top 1% on the hardest test set (NEF1% = 0.588, median of 10 repetitions), and was more predictive than any other investigated scoring function, especially the classical scoring function employed as baseline. Scientific Contribution We present the first PARP1-specific machine-learning scoring functions for structure-based virtual screening. A particularly rigorous evaluation, including test sets with novel molecules and a much higher proportion of challenging property-matched decoys, reveals the most predictive scoring function for this important therapeutic target. Typically, narrow machine learning analyses would have likely missed this promising PARP1-specific scoring function, which is now released with this paper so that others can use it for prospective virtual screening. Key Points A new scoring tool based on machine-learning was developed to predict PARP1 inhibitors for potential cancer treatment. The majority of PARP1-specific machine-learning models performed better than generic and classical scoring functions. Augmenting the training set with ligand-only Morgan fingerprint features generally resulted in better performing models, but not for the best models where no further improvement was observed. Employing protein-ligand-extracted fingerprints as molecular descriptors led to the best-performing and most-efficient model for predicting PARP1 inhibitors. Deep learning performed poorly on this target in comparison with the simpler ML models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助漂流的云朵采纳,获得10
1秒前
3秒前
5秒前
充电宝应助那姆采纳,获得30
6秒前
搜集达人应助kingslee采纳,获得10
6秒前
852应助聪慧的鹤轩采纳,获得10
8秒前
albertchan完成签到,获得积分10
9秒前
李健应助宝宝时代采纳,获得10
9秒前
突突突发布了新的文献求助10
10秒前
11秒前
Wander完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
StarChen发布了新的文献求助10
16秒前
靓丽的熠彤完成签到,获得积分10
17秒前
JAY23发布了新的文献求助10
18秒前
19秒前
kingslee发布了新的文献求助10
19秒前
大雄的梦想是什么完成签到 ,获得积分10
20秒前
禾页完成签到 ,获得积分10
21秒前
25秒前
StarChen完成签到,获得积分10
26秒前
月亮完成签到,获得积分10
29秒前
赘婿应助tianxiong采纳,获得30
30秒前
lzd完成签到,获得积分10
30秒前
lalala发布了新的文献求助10
31秒前
香蕉觅云应助Yootiao采纳,获得10
33秒前
徐徐完成签到,获得积分10
33秒前
什玖完成签到 ,获得积分10
34秒前
34秒前
35秒前
35秒前
35秒前
令狐新竹完成签到 ,获得积分10
36秒前
大模型应助哒哒采纳,获得10
36秒前
科研通AI5应助qiulong采纳,获得10
38秒前
39秒前
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776393
求助须知:如何正确求助?哪些是违规求助? 3321780
关于积分的说明 10207872
捐赠科研通 3037141
什么是DOI,文献DOI怎么找? 1666541
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757872