Noise Filtering Algorithm Using Gaussian Mixture Models for High-Resolution Mass Spectra of Natural Organic Matter

噪音(视频) 直方图 质谱 滤波器(信号处理) 算法 高斯分布 化学 谱线 高斯噪声 生物系统 模式识别(心理学) 质谱法 人工智能 计算机科学 物理 图像(数学) 色谱法 生物 计算化学 计算机视觉 天文
作者
A.A. Potemkin,Мikhail А. Proskurnin,Dmitry S. Volkov
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (14): 5455-5461 被引量:4
标识
DOI:10.1021/acs.analchem.3c05453
摘要

High-resolution mass spectra of natural organic matter (NOM) contain a large number of noise signals. These signals interfere with the correct molecular composition estimation during nontargeted analysis because formula-assignment programs find empirical formulas for such peaks as well. Previously proposed noise filtering methods that utilize the profile of the intensity distribution of mass spectrum peaks rely on a histogram to calculate the intensity threshold value. However, the histogram profile can vary depending on the user settings. In addition, these algorithms are not automated, so they are handled manually. To overcome the mentioned drawbacks, we propose a new algorithm for noise filtering in mass spectra. This filter is based on Gaussian Mixture Models (GMMs), a machine learning method to find the intensity threshold value. The algorithm is completely data-driven and eliminates the need to work with a histogram. It has no customizable parameters and automatically determines the noise level for each individual mass spectrum. The algorithm performance was tested on mass spectra of natural organic matter obtained by averaging a different number of microscans (transients), and the results were compared with other noise filters proposed in the literature. Finally, the effect of this noise filtering approach on the fraction of peaks with assigned formulas was investigated. It was shown that there is always an increase in the identification rate, but the magnitude of the effect changes with the number of microscans averaged. The increase can be as high as 15%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ukmy发布了新的文献求助10
刚刚
姜彦乔发布了新的文献求助10
1秒前
sung完成签到,获得积分10
1秒前
KIKI发布了新的文献求助10
2秒前
椿人完成签到 ,获得积分10
2秒前
skycool完成签到,获得积分10
3秒前
LEEPLUM发布了新的文献求助10
3秒前
科研废材发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
小二郎应助wenxianxiazai123采纳,获得10
5秒前
6秒前
7秒前
8秒前
mmc完成签到,获得积分10
8秒前
smin发布了新的文献求助10
9秒前
tcf完成签到,获得积分10
10秒前
10秒前
liu星雨发布了新的文献求助10
10秒前
11秒前
欢呼的茉莉完成签到,获得积分10
12秒前
Rosin发布了新的文献求助10
13秒前
14秒前
浮游应助Xinxxx采纳,获得10
15秒前
香蕉八宝粥完成签到,获得积分10
17秒前
唠叨的墨镜完成签到,获得积分20
17秒前
领导范儿应助Rsoup采纳,获得10
17秒前
grgr发布了新的文献求助10
18秒前
wwh发布了新的文献求助10
18秒前
浮游应助落后乘风采纳,获得10
18秒前
邵竺完成签到,获得积分10
19秒前
20秒前
milka发布了新的文献求助30
20秒前
简默完成签到,获得积分10
21秒前
21秒前
ding应助临床菜鸟采纳,获得20
22秒前
23秒前
狗子完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5191917
求助须知:如何正确求助?哪些是违规求助? 4375006
关于积分的说明 13623281
捐赠科研通 4229139
什么是DOI,文献DOI怎么找? 2319677
邀请新用户注册赠送积分活动 1318289
关于科研通互助平台的介绍 1268371