Hydrogel Enhanced Organoid Multidirectional Differentiation via Yap/Tead4 Mechanotransduction for Accelerated Tissue Regeneration

类有机物 机械转化 再生(生物学) 材料科学 纳米技术 细胞生物学 生物
作者
Peng Luo,Yuning Cheng,Yuwen Luo,Nan Zhang,Jingjing Cao,Hong‐Gang Wang,Xieyuan Jiang,Qian Wang,Xinbao Wu,Yajun Liu,Jianping Mao,Xinhua Zhou,Jing‐Jun Nie,Dafu Chen
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.5c06161
摘要

The repair of multiple organs in motor systems remains a major clinical challenge that necessitates bioactive grafts with a multidirectional differentiation ability. Hydrogel-based organoids implants have emerged as pivotal tools and attracted great attentions. However, strategies to unlock the multipotency of bone marrow mesenchymal stem cells (BMSCs) by precisely modulating the mechanical and structural characteristics of biomimetic extracellular matrix (ECM) during hydrogel-based organoid construction remain underexplored. In this study, a gelatin methacryloyl (GelMA)-based biomimetic ECM mimic hydrogel (HG-2) loaded with BMSCs was developed to construct a multidirectional differentiation organoid, HG-2/3d-BMSC. The hydrogel could provide spatial mechanical stimulation to adherent BMSCs via cell adhesion induced cytoskeleton assembly. RNA sequencing (RNA-Seq) combined with in vitro and in vivo biological experiments reveals that ECM mimic hydrogels deliver adhesion-based spatial mechanical stimulation. This mechanical stimulation specifically unlocks the multipotency of BMSCs during osteogenic differentiation induction. Furthermore, it accelerates and enhances the multidirectional differentiation capacity of BMSCs, simultaneously promoting their commitment to osteogenic, chondrogenic, and tendonogenic tissue lineages. Further investigations prove that adhesion-based spatial mechanical stimulation from the ECM mimic hydrogel enhances multidirectional differentiation of BMSCs-based organoid via Yap/Tead4 (yes-associated protein/TEA domain transcription factor 4) mechanotransduction mediated Kat7 downregulation. The work not only advances the theoretical framework for designing biomaterials that exploit mechanical cues to override biochemical-driven lineage commitment but also establishes a novel paradigm for developing multifunctional organoid constructs to address the clinical challenge of regenerating hierarchically complex tissues in a motor system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rzzzz发布了新的文献求助10
刚刚
研友_VZG7GZ应助interventiongod采纳,获得10
1秒前
1秒前
1秒前
2秒前
MMZ完成签到 ,获得积分10
4秒前
qianlan发布了新的文献求助10
4秒前
yemeiyu完成签到,获得积分10
5秒前
凶狠的谷蓝完成签到,获得积分10
5秒前
rzzzz完成签到,获得积分20
5秒前
Future发布了新的文献求助10
5秒前
Yue发布了新的文献求助10
6秒前
科研小桶发布了新的文献求助10
7秒前
18°N天水色完成签到,获得积分10
8秒前
8秒前
zpy完成签到,获得积分10
9秒前
dddd完成签到,获得积分10
9秒前
许哲完成签到,获得积分10
10秒前
10秒前
qianlan完成签到,获得积分10
10秒前
10秒前
汉堡包应助yff采纳,获得10
11秒前
12秒前
王嘉玮发布了新的文献求助10
12秒前
浅斟低唱发布了新的文献求助10
15秒前
斯文败类应助姜姜采纳,获得10
15秒前
豌豆射手发布了新的文献求助30
17秒前
科研小桶完成签到,获得积分20
21秒前
Lisa完成签到 ,获得积分10
21秒前
bogula1112完成签到 ,获得积分10
24秒前
ysysljj应助科研通管家采纳,获得10
26秒前
李爱国应助科研通管家采纳,获得10
26秒前
慕青应助科研通管家采纳,获得20
26秒前
ysysljj应助科研通管家采纳,获得30
26秒前
NexusExplorer应助科研通管家采纳,获得10
26秒前
今后应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
26秒前
小蘑菇应助聪慧的盼夏采纳,获得10
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4109721
求助须知:如何正确求助?哪些是违规求助? 3648056
关于积分的说明 11555522
捐赠科研通 3353801
什么是DOI,文献DOI怎么找? 1842442
邀请新用户注册赠送积分活动 908829
科研通“疑难数据库(出版商)”最低求助积分说明 825745