清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel federated learning framework for medical imaging: Resource‐efficient approach combining PCA with early stopping

计算机科学 稳健性(进化) 主成分分析 降维 工作流程 聚类分析 原始数据 数据挖掘 过程(计算) 独立同分布随机变量 医学影像学 机器学习 人工智能 数据库 数学 随机变量 生物化学 基因 操作系统 程序设计语言 统计 化学
作者
Negin Piran Nanekaran,Eranga Ukwatta
出处
期刊:Medical Physics [Wiley]
卷期号:52 (8): e18064-e18064
标识
DOI:10.1002/mp.18064
摘要

Abstract Background Federated learning (FL) facilitates collaborative model training across multiple institutions while preserving privacy by avoiding the sharing of raw data, a critical consideration in medical imaging applications. Despite its potential, FL faces challenges such as high‐dimensional data, heterogeneity among datasets from different centers, and resource constraints, which limit its efficiency and effectiveness in healthcare settings. Purpose This study aims to present a novel adaptive FL framework to address the challenges of data heterogeneity and resource constraints in medical imaging. The proposed framework is designed to optimize computational efficiency, enhance training processes, improve model performance, and ensure robustness against non‐independent and identically distributed (non‐IID) data across decentralized data sources. Methods The proposed adaptive FL framework addresses the challenges of high‐dimensional data and heterogeneity in nonuniform and decentralized data sources through a key innovation. First, Federated incremental principal component analysis (FIPCA) achieves privacy‐preserving dimensionality reduction by aggregating local scatter matrices and means from participating centers, enabling the computation of a global PCA model. This process ensures data alignment across centers, mitigates heterogeneity, and significantly reduces computational complexity. We evaluated the framework's ability to generalize across institutions in a cross‐site classification task distinguishing clinically significant prostate cancer (csPCa) from non‐csPCa. This assessment used 1500 T2‐weighted (T2W) prostate MRI images from three institutions, where two centers (800 + 350 cases) were used for training and validation, and one center (350 cases) served as an independent test site. Results The proposed method significantly reduced the number of global training rounds from 200 to 38, achieving a 98% reduction in energy consumption compared to the standard FedAvg algorithm. The effective use of FIPCA for dimensionality reduction enhanced generalizability, while adaptive early stopping prevented overfitting, leading to an improvement in model performance, with the area under the curve (AUC) on the unseen test center increasing from 0.68 to 0.73 (95 % CI 0.70 – 0.77) on the test center's data. Additionally, the method demonstrated improved sensitivity and specificity, indicating superior classification performance. The integration of FIPCA accelerated convergence by reducing data dimensionality, while the adaptive early‐stopping mechanism further optimized resource utilization and prevented overfitting. Conclusions Our adaptive FL approach efficiently handles large, heterogeneous medical imaging data, reducing training time and computational overhead, while improving model accuracy. The substantial reduction in energy consumption and accelerated convergence make it suitable for real‐world healthcare settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄水星发布了新的文献求助10
1秒前
14秒前
lutos发布了新的文献求助10
19秒前
hoy完成签到 ,获得积分10
26秒前
科研通AI2S应助ceeray23采纳,获得20
26秒前
林楚棋完成签到 ,获得积分10
45秒前
务实的初蝶完成签到 ,获得积分10
52秒前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
Yuki完成签到 ,获得积分10
1分钟前
小珂完成签到,获得积分10
1分钟前
清秀LL完成签到 ,获得积分10
1分钟前
山东大煎饼完成签到,获得积分10
1分钟前
lllyjs完成签到 ,获得积分10
1分钟前
wuqi完成签到 ,获得积分10
2分钟前
大医仁心完成签到 ,获得积分10
3分钟前
3分钟前
小小虾完成签到 ,获得积分10
3分钟前
woxinyouyou完成签到,获得积分0
4分钟前
4分钟前
卡布发布了新的文献求助10
4分钟前
Hello应助卡布采纳,获得10
4分钟前
5分钟前
碗碗豆喵完成签到 ,获得积分10
5分钟前
Luke发布了新的文献求助10
5分钟前
Ava应助Luke采纳,获得10
6分钟前
6分钟前
Luke发布了新的文献求助10
6分钟前
Luke发布了新的文献求助10
7分钟前
小王wang完成签到,获得积分10
7分钟前
apk866完成签到 ,获得积分10
7分钟前
7分钟前
乐乐应助Luke采纳,获得10
7分钟前
卡布发布了新的文献求助10
7分钟前
幽默的季节完成签到 ,获得积分10
7分钟前
今后应助科研通管家采纳,获得10
7分钟前
咯咯咯完成签到 ,获得积分10
8分钟前
卡布完成签到,获得积分10
8分钟前
8分钟前
Luke发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599887
求助须知:如何正确求助?哪些是违规求助? 4685602
关于积分的说明 14838712
捐赠科研通 4672541
什么是DOI,文献DOI怎么找? 2538338
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1470965