Convolutional neural networks for solving computer vision problems

卷积神经网络 计算机科学 人工智能 人工神经网络 深度学习 图像处理 分割 鉴定(生物学) 过程(计算) 模式识别(心理学) 像素 机器学习 机器视觉 视觉对象识别的认知神经科学 上下文图像分类 计算机视觉 特征提取 图像(数学) 植物 生物 操作系统
作者
O. Zinchenko
出处
期刊:Telekomunìkacìjnì ta ìnformacìjnì tehnologìï [State University of Telecommunications]
卷期号:75 (2) 被引量:1
标识
DOI:10.31673/2412-4338.2022.020411
摘要

This article provides an overview of the main methods of solving computer vision problems of classification, segmentation and image processing, which are implemented in CV systems. Computer vision systems are programmed to perform highly specialized tasks, capable of detecting objects during identification, reading serial numbers, and searching for surface defects. When applying deep learning methods in CV systems, their processing speed on large data sets and the accuracy of image classification/segmentation are significantly increased. Artificial vision systems are able to identify individual pixels according to the relevant features during processing, provide a high-quality result in pattern recognition, image restoration, and fitting part of the image. Although some computer vision algorithms were developed to simulate visual perception, a larger number of proposed methods are able to fully process images and determine their characteristic properties. The scope of application of CV systems will continue to expand, as the need for artificial intelligence systems is growing rapidly. The purpose of this article is to provide a structured review of computer vision technologies based on their advantages and disadvantages. The work summarizes the types of CV-systems with artificial intelligence according to the spectrum of their applications, highlights the main problematic areas of their research, such as recognition, identification and detection. The article reviews convolutional neural networks (CNNs), which are successfully applied to the analysis of visual images in deep learning. CNN architectures in some cases outperform artificial neural networks in classification tasks by their performance. Currently, convolutional neural networks are the main tool for classification and recognition of objects, faces in photographs, recognition of video and audio materials. This paper provides a comparative analysis of well-known CNN models: LeNet 5, AlexNet, VGGNet, GoogLeNet, ResNet and their effectiveness in CV systems. Approaches to the modeling of architectures of convolutional neural networks are proposed, which will allow, in the future, to solve the problem of classification in tasks for computer vision, thereby increasing their performance, accuracy and quality of processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LOST完成签到 ,获得积分10
刚刚
西西完成签到,获得积分10
刚刚
顾矜应助Rainielove0215采纳,获得10
4秒前
saf0852完成签到,获得积分10
7秒前
8秒前
潇洒的语蝶完成签到 ,获得积分10
15秒前
庄怀逸完成签到 ,获得积分10
15秒前
米博士完成签到,获得积分10
16秒前
Wanyeweiyu完成签到,获得积分10
19秒前
小天竺1212完成签到,获得积分10
20秒前
22秒前
重景完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助30
24秒前
快乐的完成签到 ,获得积分10
28秒前
爱笑的眼睛完成签到,获得积分10
29秒前
一枝完成签到 ,获得积分10
31秒前
Shrimp完成签到 ,获得积分10
31秒前
青山完成签到 ,获得积分10
35秒前
余健完成签到,获得积分10
35秒前
山东老铁完成签到,获得积分10
38秒前
风雨霖霖发布了新的文献求助10
38秒前
innocent完成签到,获得积分10
38秒前
Diaory2023完成签到 ,获得积分0
39秒前
故意的书本完成签到 ,获得积分10
40秒前
40秒前
三百一十四完成签到 ,获得积分10
42秒前
xingxing完成签到 ,获得积分10
42秒前
sydhwo完成签到 ,获得积分10
44秒前
hhh完成签到 ,获得积分10
47秒前
慕青应助科研通管家采纳,获得10
49秒前
8R60d8应助科研通管家采纳,获得10
49秒前
8R60d8应助科研通管家采纳,获得10
49秒前
冰魂应助科研通管家采纳,获得150
49秒前
赘婿应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
冰魂应助科研通管家采纳,获得30
50秒前
量子星尘发布了新的文献求助10
52秒前
53秒前
迎南完成签到,获得积分10
56秒前
57秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885956
求助须知:如何正确求助?哪些是违规求助? 3427998
关于积分的说明 10757296
捐赠科研通 3152784
什么是DOI,文献DOI怎么找? 1740660
邀请新用户注册赠送积分活动 840338
科研通“疑难数据库(出版商)”最低求助积分说明 785317