Exploring nonlinear strengthening in polycrystalline metallic materials by machine learning methods and heterostructure design

材料科学 异质结 非线性系统 微观结构 微晶 材料的强化机理 叠加原理 复合材料 冶金 数学分析 数学 光电子学 量子力学 物理
作者
Jinliang Du,Jie Li,Yunli Feng,Ying Li,Fucheng Zhang
出处
期刊:International Journal of Plasticity [Elsevier BV]
卷期号:164: 103587-103587 被引量:9
标识
DOI:10.1016/j.ijplas.2023.103587
摘要

To improve the strength and plasticity of structural materials, researchers often introduce various strengthening mechanisms such as second-phase strengthening, dislocation strengthening, and back stress strengthening (HDI). Due to the interaction of multiple mechanisms, the linear superposition relationship has a poor fitting effect and is only used for rough calculations of the strengthening mechanisms. In this study, the transfer learning data was used to optimize the deep learning network structure (Re-CNN) based on the residual algorithm, and the yield strength prediction physical neural informed model (PNIM) of polycrystalline metallic materials was established. To promote the industrial application of the heterostructure design method, a medium carbon steel heterostructure design strategy based on the existing equipment of the factory was proposed. Medium-carbon heterostructure materials (MHSM) with mixed strengthening mechanisms were successfully prepared. MHSM exhibits excellent comprehensive mechanical properties. When a linear relationship is used to describe the MHSM yield strength, there is a large error, while Re-CNN shows satisfactory prediction accuracy. The linear relationship is incompatible with homogeneous structure materials and heterogeneous structure materials, and its universality is lower than that of nonlinear Re-CNN. Re-CNN shows high cross-scale prediction ability and can be compatible with homogeneous microstructures and heterogeneous microstructures. Using the heterogeneity evolution characteristics of MHSM, the key factors deviating from the linear relationship were revealed. The overestimation and underestimation of the linear relation are demonstrated by Taylor factor and TEM analysis to be caused by the multiscale properties of ferrite, the behavior of the second phase particles, and the interaction of various mechanisms. This study provides a new idea for the cross-scale calculation of the mechanical properties of polycrystalline metallic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李泽完成签到,获得积分10
1秒前
eric888应助cjh采纳,获得200
2秒前
3秒前
俏皮的采蓝完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
甜蜜的曼冬完成签到,获得积分10
6秒前
凛冬完成签到,获得积分10
6秒前
6秒前
斯文败类应助啊桐采纳,获得30
6秒前
认真生活完成签到,获得积分10
7秒前
lll完成签到,获得积分20
7秒前
7秒前
科研通AI2S应助朱小小采纳,获得10
10秒前
Toxic完成签到 ,获得积分10
10秒前
情怀应助抗体药物偶联采纳,获得10
10秒前
屿杓发布了新的文献求助10
10秒前
11秒前
田様应助脆脆鲨采纳,获得10
11秒前
wao完成签到 ,获得积分10
12秒前
12秒前
zzx完成签到,获得积分10
13秒前
霸气凌柏发布了新的文献求助10
13秒前
澜斐发布了新的文献求助10
14秒前
lwk205完成签到,获得积分0
14秒前
16秒前
美妮完成签到,获得积分20
17秒前
心静如水发布了新的文献求助10
17秒前
shy发布了新的文献求助10
18秒前
一一应助黑米粥采纳,获得10
20秒前
20秒前
Owen应助wen采纳,获得10
21秒前
Lucas应助海洋采纳,获得10
21秒前
21秒前
21秒前
tyt完成签到 ,获得积分10
23秒前
慕青应助祝贺盒子采纳,获得10
23秒前
23秒前
23秒前
24秒前
登山人完成签到,获得积分10
24秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867343
求助须知:如何正确求助?哪些是违规求助? 3409640
关于积分的说明 10664507
捐赠科研通 3133927
什么是DOI,文献DOI怎么找? 1728591
邀请新用户注册赠送积分活动 833038
科研通“疑难数据库(出版商)”最低求助积分说明 780517