亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics model of diffusion-weighted whole-body imaging with background signal suppression (DWIBS) for predicting axillary lymph node status in breast cancer

医学 乳腺癌 逻辑回归 接收机工作特性 置信区间 淋巴结 无线电技术 支持向量机 放射科 人工智能 计算机科学 内科学 癌症
作者
Takafumi Haraguchi,Yasuyuki Kobayashi,Daisuke Hirahara,Tatsuaki Kobayashi,Eichi Takaya,Mariko Takishita Nagai,Hayato Tomita,Jun Okamoto,Yoshihide Kanemaki,Koichiro Tsugawa
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:31 (3): 627-640 被引量:5
标识
DOI:10.3233/xst-230009
摘要

In breast cancer diagnosis and treatment, non-invasive prediction of axillary lymph node (ALN) metastasis can help avoid complications related to sentinel lymph node biopsy.This study aims to develop and evaluate machine learning models using radiomics features extracted from diffusion-weighted whole-body imaging with background signal suppression (DWIBS) examination for predicting the ALN status.A total of 100 patients with histologically proven, invasive, clinically N0 breast cancer who underwent DWIBS examination consisting of short tau inversion recovery (STIR) and DWIBS sequences before surgery were enrolled. Radiomic features were calculated using segmented primary lesions in DWIBS and STIR sequences and were divided into training (n = 75) and test (n = 25) datasets based on the examination date. Using the training dataset, optimal feature selection was performed using the least absolute shrinkage and selection operator algorithm, and the logistic regression model and support vector machine (SVM) classifier model were constructed with DWIBS, STIR, or a combination of DWIBS and STIR sequences to predict ALN status. Receiver operating characteristic curves were used to assess the prediction performance of radiomics models.For the test dataset, the logistic regression model using DWIBS, STIR, and a combination of both sequences yielded an area under the curve (AUC) of 0.765 (95% confidence interval: 0.548-0.982), 0.801 (0.597-1.000), and 0.779 (0.567-0.992), respectively, whereas the SVM classifier model using DWIBS, STIR, and a combination of both sequences yielded an AUC of 0.765 (0.548-0.982), 0.757 (0.538-0.977), and 0.779 (0.567-0.992), respectively.Use of machine learning models incorporating with the quantitative radiomic features derived from the DWIBS and STIR sequences can potentially predict ALN status.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小付发布了新的文献求助10
1秒前
16秒前
白潇潇发布了新的文献求助10
22秒前
Anlocia发布了新的文献求助30
23秒前
wr781586完成签到 ,获得积分10
31秒前
AA完成签到 ,获得积分10
35秒前
40秒前
53秒前
1分钟前
zzz发布了新的文献求助10
1分钟前
研友_VZG7GZ应助odin123采纳,获得10
1分钟前
1分钟前
1分钟前
复杂的惜海完成签到,获得积分10
1分钟前
白潇潇发布了新的文献求助10
1分钟前
odin123发布了新的文献求助10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
Jessica完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
ilikefoc发布了新的文献求助10
1分钟前
1分钟前
mihumihu发布了新的文献求助10
2分钟前
李健的小迷弟应助小付采纳,获得10
2分钟前
2分钟前
Demi_Ming完成签到,获得积分10
2分钟前
所所应助mihumihu采纳,获得10
2分钟前
小二郎应助白潇潇采纳,获得10
2分钟前
2分钟前
小付发布了新的文献求助10
2分钟前
2分钟前
2分钟前
在水一方应助小付采纳,获得10
2分钟前
小付完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554838
求助须知:如何正确求助?哪些是违规求助? 4639397
关于积分的说明 14656191
捐赠科研通 4581355
什么是DOI,文献DOI怎么找? 2512711
邀请新用户注册赠送积分活动 1487466
关于科研通互助平台的介绍 1458378