已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fruit-Net: Fruits Recognition System Using Convolutional Neural Network

卷积神经网络 人工智能 计算机科学 深度学习 模式识别(心理学) 上下文图像分类 过程(计算) 航程(航空) 图像(数学) 机器学习 工程类 航空航天工程 操作系统
作者
Olivia Saha Mandal,Aniruddha Dey,Subhrapratim Nath,Rabindra Nath Shaw,Ankush Ghosh
出处
期刊:Communications in computer and information science 卷期号:: 120-133 被引量:4
标识
DOI:10.1007/978-3-031-25088-0_10
摘要

AbstractFor many industrial applications, classifying fruits is an essential process. A supermarket cashier can use a fruit classification system to distinguish between different types of fruit and their prices. Additionally, it can be used to determine whether a particular fruit species satisfies a person’s nutritional needs. In this chapter, we propose a framework for fruit classification using deep learning techniques. More specifically, the framework is a comparison of two different deep learning architectures. The first is a 6-layer light model proposed for convolutional neural networks, and the second is a carefully tuned deep learning model for group-16 visual geometry. The proposed approach is tested using one publicly accessible color-image dataset. The images of fruit that were utilized for training came from our own photos, Google photos, and the data that ImageNet 2012 gave. This database contained 1.2 million images and 1,000 categories. The 1,200 fruit images that had been divided into six groups had been assessed and categorized. The average classification performance was 0.9688 out of a possible range of 0.8456 to 1.0 depending on the fruit, and each photo took about 0.25 s to classify. With only a few errors, the CNN algorithm was able to successfully classify the fruit photographs into the six categories. On the dataset, the CNN, VGG16, and Inception V3 models each achieved classification accuracy results of 96.88%, 72%, and 71.66% respectively.KeywordsFruit recognitionConvolutional neural networkClassificationVGG16Inception V3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vetres关注了科研通微信公众号
1秒前
5秒前
liu发布了新的文献求助10
6秒前
科研通AI2S应助清爽的乐曲采纳,获得10
6秒前
谦让的萤完成签到 ,获得积分10
11秒前
没有昵称完成签到 ,获得积分10
13秒前
14秒前
鱼鱼完成签到,获得积分10
14秒前
CoCoco完成签到,获得积分10
15秒前
annzl完成签到,获得积分20
15秒前
orixero应助愉快的定帮采纳,获得10
15秒前
CoCoco发布了新的文献求助10
19秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
斯文败类应助科研通管家采纳,获得10
20秒前
liuliu应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得30
20秒前
怕孤独的小懒猪完成签到 ,获得积分20
20秒前
22秒前
24秒前
24秒前
26秒前
镜小小静发布了新的文献求助10
26秒前
26秒前
dox发布了新的文献求助10
27秒前
人不犯二枉少年完成签到,获得积分10
27秒前
bkagyin应助Xyx采纳,获得10
28秒前
28秒前
30秒前
31秒前
32秒前
咚咚锵发布了新的文献求助10
33秒前
优雅含灵完成签到 ,获得积分10
36秒前
谨慎采白完成签到 ,获得积分10
37秒前
38秒前
大模型应助ADCIST采纳,获得10
39秒前
领导范儿应助飞快的笑容采纳,获得10
43秒前
44秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845361
求助须知:如何正确求助?哪些是违规求助? 3387593
关于积分的说明 10550102
捐赠科研通 3108339
什么是DOI,文献DOI怎么找? 1712543
邀请新用户注册赠送积分活动 824461
科研通“疑难数据库(出版商)”最低求助积分说明 774808