Anomaly detection for streaming data based on grid-clustering and Gaussian distribution

异常检测 计算机科学 聚类分析 数据挖掘 网格 异常(物理) 高斯分布 水准点(测量) 确定数据集中的群集数 噪音(视频) 模式识别(心理学) 流式数据 人工智能 CURE数据聚类算法 相关聚类 数学 地质学 图像(数学) 物理 量子力学 凝聚态物理 大地测量学 几何学
作者
Beiji Zou,Kangkang Yang,Xiaoyan Kui,Jun Liu,Shenghui Liao,Wei Zhao
出处
期刊:Information Sciences [Elsevier BV]
卷期号:638: 118989-118989 被引量:9
标识
DOI:10.1016/j.ins.2023.118989
摘要

A massive amount of real-time and evolving streaming data are produced from various devices and applications. Anomaly detection is one of the main tasks of streaming data mining with many practical applications. However, without prior knowledge, it is difficult to detect the anomaly accurately and quickly. In this paper, we propose an unsupervised anomaly detection algorithm (GC-ADS), which is based on the idea of grid clustering and Gaussian distribution. Specifically, the data space is first segmented using the grid structure, then the data points are mapped to grids and finally grids are clustered. The anomaly can be preliminarily judged according to the cluster density. To solve the problem that clustering cannot distinguish between noise and anomaly, based on the idea of data similarity and Gaussian distribution, a noise recognition model is designed. In addition, a data filtering model based on grid and sliding window is designed to save memory and retain valid information. The proposed method is compared with the state-of-the-art methods on the Numenta anomaly benchmark. Experimental results indicate that GC-ADS detects anomalies more accurately than other methods with less time cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助21采纳,获得10
刚刚
咕噜应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得30
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
winston完成签到,获得积分10
2秒前
养乐多应助科研通管家采纳,获得20
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
半分青蓝发布了新的文献求助10
3秒前
3秒前
琪琪完成签到,获得积分10
4秒前
4秒前
zzy完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
7秒前
呆萌笑晴完成签到,获得积分10
8秒前
8秒前
科研通AI5应助黄金蛋饺采纳,获得10
9秒前
小x发布了新的文献求助10
10秒前
不执笔13发布了新的文献求助10
10秒前
李宏梅完成签到,获得积分10
11秒前
21发布了新的文献求助10
12秒前
共享精神应助哈哈采纳,获得10
13秒前
14秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799902
求助须知:如何正确求助?哪些是违规求助? 3345253
关于积分的说明 10324369
捐赠科研通 3061839
什么是DOI,文献DOI怎么找? 1680542
邀请新用户注册赠送积分活动 807138
科研通“疑难数据库(出版商)”最低求助积分说明 763491