Predictive Value of Machine Learning Models in Postoperative Mortality of Older Adults Patients with Hip Fracture: A Systematic Review and Meta-analysis

机器学习 荟萃分析 医学 髋部骨折 人工智能 计算机科学 骨质疏松症 内科学
作者
Fan Liu,Chao Liu,Xiaoju Tang,Defei Gong,Jichong Zhu,Xiaoyun Zhang
出处
期刊:Archives of Gerontology and Geriatrics [Elsevier BV]
卷期号:115: 105120-105120 被引量:2
标识
DOI:10.1016/j.archger.2023.105120
摘要

Some researchers have used machine learning to predict mortality in old patients with hip fracture, but its application value lacks an evidence-based basis. Hence, we conducted this meta-analysis to explore the predictive accuracy of machine learning for mortality in old patients with hip fracture. We systematically retrieved PubMed, Cochrane, Embase, and Web of Science for relevant studies published before July 15, 2022. The PROBAST assessment tool was used to assess the risk of bias in the included studies. A random-effects model was used for the meta-analysis of C-index, whereas a bivariate mixed-effects model was used for the meta-analysis of sensitivity and specificity. The meta-analysis was performed on R and Stata. Eighteen studies were included, involving 8 machine learning models and 398,422 old patients undergoing hip joint surgery, of whom 60,457 died. According to the meta-analysis, the pooled C-index for machine learning models was 0.762 (95% CI: 0.691 ∼ 0.833) in the training set and 0.838 (95% CI: 0.783 ∼ 0.892) in the validation set, which is better than the C-index of the main clinical scale (Nottingham Hip Fracture Score), that is, 0.702 (95% CI: 0.681 ∼ 0.723). Among different machine learning models, ANN and Bayesian belief network had the best predictive performance. Machine learning models are more accurate in predicting mortality in old patients after hip joint surgery than current mainstream clinical scoring systems. Subsequent research could focus on updating clinical scoring systems and improving their predictive performance by relying on machine learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Accepted完成签到,获得积分0
1秒前
复杂颦完成签到 ,获得积分10
1秒前
土豆完成签到,获得积分10
1秒前
健忘的飞雪完成签到,获得积分10
3秒前
3秒前
冬瓜有内涵呐完成签到,获得积分10
3秒前
syuen完成签到,获得积分10
3秒前
双碳小王子完成签到,获得积分10
4秒前
xy完成签到,获得积分10
4秒前
5秒前
早起完成签到,获得积分10
6秒前
大椒完成签到 ,获得积分10
6秒前
龙舞星完成签到,获得积分10
7秒前
科研小菜鸡完成签到,获得积分10
7秒前
xinxinfenghuo完成签到,获得积分10
7秒前
青衣完成签到,获得积分10
8秒前
某云完成签到 ,获得积分10
9秒前
gao完成签到,获得积分10
9秒前
皮PP完成签到,获得积分10
10秒前
章鱼哥完成签到,获得积分10
10秒前
10秒前
蓝天碧海小西服完成签到,获得积分0
11秒前
现代绮玉完成签到,获得积分10
13秒前
昵称完成签到,获得积分10
13秒前
刺五加完成签到 ,获得积分10
13秒前
小悟空的美好年华完成签到 ,获得积分10
13秒前
隐形完成签到,获得积分10
14秒前
缥缈纲应助风中的丝袜采纳,获得10
15秒前
吃零食吃不下饭完成签到,获得积分10
15秒前
sunshine应助风中的丝袜采纳,获得10
15秒前
SYLH应助风中的丝袜采纳,获得10
15秒前
陈晗予完成签到,获得积分10
15秒前
YZ完成签到,获得积分10
15秒前
翁雁丝完成签到 ,获得积分10
17秒前
mint完成签到,获得积分10
17秒前
袁江堰完成签到,获得积分10
18秒前
xyh完成签到,获得积分10
18秒前
夜捕白日梦完成签到,获得积分10
18秒前
胡茶茶完成签到 ,获得积分10
20秒前
义气若冰完成签到,获得积分10
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816002
求助须知:如何正确求助?哪些是违规求助? 3359464
关于积分的说明 10402883
捐赠科研通 3077360
什么是DOI,文献DOI怎么找? 1690292
邀请新用户注册赠送积分活动 813716
科研通“疑难数据库(出版商)”最低求助积分说明 767743