Applying HCAI in developing effective human-AI teaming: A perspective from human-AI joint cognitive systems

背景(考古学) 计算机科学 透视图(图形) 认知 功能(生物学) 人工智能 知识管理 认知科学 数据科学 心理学 进化生物学 生物 古生物学 神经科学
作者
Wei Xu,Zaifeng Gao
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2307.03913
摘要

Research and application have used human-AI teaming (HAT) as a new paradigm to develop AI systems. HAT recognizes that AI will function as a teammate instead of simply a tool in collaboration with humans. Effective human-AI teams need to be capable of taking advantage of the unique abilities of both humans and AI while overcoming the known challenges and limitations of each member, augmenting human capabilities, and raising joint performance beyond that of either entity. The National AI Research and Strategic Plan 2023 update has recognized that research programs focusing primarily on the independent performance of AI systems generally fail to consider the functionality that AI must provide within the context of dynamic, adaptive, and collaborative teams and calls for further research on human-AI teaming and collaboration. However, there has been debate about whether AI can work as a teammate with humans. The primary concern is that adopting the "teaming" paradigm contradicts the human-centered AI (HCAI) approach, resulting in humans losing control of AI systems. This article further analyzes the HAT paradigm and the debates. Specifically, we elaborate on our proposed conceptual framework of human-AI joint cognitive systems (HAIJCS) and apply it to represent HAT under the HCAI umbrella. We believe that HAIJCS may help adopt HAI while enabling HCAI. The implications and future work for HAIJCS are also discussed. Insights: AI has led to the emergence of a new form of human-machine relationship: human-AI teaming (HAT), a paradigmatic shift in human-AI systems; We must follow a human-centered AI (HCAI) approach when applying HAT as a new design paradigm; We propose a conceptual framework of human-AI joint cognitive systems (HAIJCS) to represent and implement HAT for developing effective human-AI teaming
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿玖完成签到 ,获得积分10
2秒前
小黄完成签到 ,获得积分10
2秒前
大个应助yu采纳,获得10
3秒前
感动书文完成签到,获得积分10
4秒前
Rui完成签到 ,获得积分10
5秒前
7秒前
ShellyHan发布了新的文献求助10
12秒前
ljy1111发布了新的文献求助30
12秒前
12秒前
酷波er应助加快步伐采纳,获得10
13秒前
Johy完成签到,获得积分20
13秒前
Ca完成签到,获得积分10
17秒前
17秒前
huanir99发布了新的文献求助10
18秒前
Sw1ft完成签到 ,获得积分10
19秒前
孤独梦安完成签到,获得积分10
21秒前
23秒前
饮一杯为谁丶完成签到,获得积分10
26秒前
Robert完成签到,获得积分10
27秒前
加快步伐发布了新的文献求助10
28秒前
洛洛发布了新的文献求助10
29秒前
30秒前
qq完成签到,获得积分10
34秒前
34秒前
归雁发布了新的文献求助10
35秒前
zhouleiwang发布了新的文献求助10
37秒前
加快步伐完成签到,获得积分10
37秒前
38秒前
sunny完成签到,获得积分10
38秒前
40秒前
44秒前
今天的风儿甚是喧嚣完成签到,获得积分10
44秒前
自由橘子完成签到 ,获得积分10
47秒前
48秒前
孟伟完成签到,获得积分10
49秒前
昏睡的蟠桃应助科研通管家采纳,获得200
49秒前
wy.he应助科研通管家采纳,获得30
50秒前
传奇3应助科研通管家采纳,获得10
50秒前
50秒前
Jasper应助科研通管家采纳,获得30
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777911
求助须知:如何正确求助?哪些是违规求助? 3323444
关于积分的说明 10214462
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758304