Margin-Maximized Norm-Mixed Representation Learning for Autism Spectrum Disorder Diagnosis With Multi-Level Flux Features

判别式 人工智能 边距(机器学习) 模式识别(心理学) 代表(政治) 特征学习 计算机科学 特征向量 特征(语言学) 离群值 规范(哲学) 机器学习 自闭症谱系障碍 自闭症 心理学 发展心理学 语言学 哲学 政治 政治学 法学
作者
Qing Xiao,Haozhe Xu,Zhiqin Chu,Feng Qianjin,Yu Zhang
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:71 (1): 183-194 被引量:1
标识
DOI:10.1109/tbme.2023.3294223
摘要

Early diagnosis and timely intervention are significantly beneficial to patients with autism spectrum disorder (ASD). Although structural magnetic resonance imaging (sMRI) has become an essential tool to facilitate the diagnosis of ASD, these sMRI-based approaches still have the following issues. The heterogeneity and subtle anatomical changes place higher demands for effective feature descriptors. Additionally, the original features are usually high-dimensional, while most existing methods prefer to select feature subsets in the original space, in which noises and outliers may hinder the discriminative ability of selected features. In this article, we propose a margin-maximized norm-mixed representation learning framework for ASD diagnosis with multi-level flux features extracted from sMRI. Specifically, a flux feature descriptor is devised to quantify comprehensive gradient information of brain structures on both local and global levels. For the multi-level flux features, we learn latent representations in an assumed low-dimensional space, in which a self-representation term is incorporated to characterize the relationships among features. We also introduce mixed norms to finely select original flux features for the construction of latent representations while preserving the low-rankness of latent representations. Furthermore, a margin maximization strategy is applied to enlarge the inter-class distance of samples, thereby increasing the discriminative ability of latent representations. The extensive experiments on several datasets show that our proposed method can achieve promising classification performance (the average area under curve, accuracy, specificity, and sensitivity on the studied ASD datasets are 0.907, 0.896, 0.892, and 0.908, respectively) and also find potential biomarkers for ASD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形曼青应助cc采纳,获得10
1秒前
zz完成签到,获得积分10
2秒前
dydxf完成签到,获得积分10
2秒前
可爱的函函应助hhh采纳,获得10
2秒前
xiao666发布了新的文献求助10
2秒前
helen完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
cangye发布了新的文献求助10
4秒前
XY完成签到,获得积分10
5秒前
巧克力完成签到 ,获得积分10
5秒前
小花完成签到,获得积分20
5秒前
5秒前
7秒前
少年发布了新的文献求助10
7秒前
7秒前
刘一安完成签到 ,获得积分10
8秒前
8秒前
water关注了科研通微信公众号
8秒前
Jiro发布了新的文献求助10
9秒前
9秒前
苹果发布了新的文献求助10
9秒前
123完成签到,获得积分10
11秒前
xiao666完成签到,获得积分10
11秒前
11秒前
椋鸟应助小花采纳,获得10
11秒前
听雪冬眠完成签到,获得积分10
12秒前
12秒前
和谐灵波完成签到 ,获得积分10
12秒前
高挑的萤发布了新的文献求助10
12秒前
科研通AI5应助耳朵先生采纳,获得10
12秒前
西门子云完成签到,获得积分10
13秒前
queen814发布了新的文献求助10
13秒前
晚晚完成签到,获得积分10
13秒前
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804701
求助须知:如何正确求助?哪些是违规求助? 3349568
关于积分的说明 10345175
捐赠科研通 3065662
什么是DOI,文献DOI怎么找? 1683192
邀请新用户注册赠送积分活动 808733
科研通“疑难数据库(出版商)”最低求助积分说明 764723