Prediction of phase-separation propensities of disordered proteins from sequence

相(物质) 分离(统计) 化学物理 序列(生物学) 化学 结晶学 计算机科学 材料科学 机器学习 生物化学 有机化学
作者
Sören von Bülow,Giulio Tesei,Fatima Zaidi,Tanja Mittag,Kresten Lindorff‐Larsen
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (13) 被引量:7
标识
DOI:10.1073/pnas.2417920122
摘要

Phase separation is one possible mechanism governing the selective cellular enrichment of biomolecular constituents for processes such as transcriptional activation, mRNA regulation, and immune signaling. Phase separation is mediated by multivalent interactions of macromolecules including intrinsically disordered proteins and regions (IDRs). Despite considerable advances in experiments, theory, and simulations, the prediction of the thermodynamics of IDR phase behavior remains challenging. We combined coarse-grained molecular dynamics simulations and active learning to develop a fast and accurate machine learning model to predict the free energy and saturation concentration for phase separation directly from sequence. We validate the model using computational and previously measured experimental data, as well as new experimental data for six proteins. We apply our model to all 27,663 IDRs of chain length up to 800 residues in the human proteome and find that 1,420 of these (5%) are predicted to undergo homotypic phase separation with transfer free energies < −2 kBT. We use our model to understand the relationship between single-chain compaction and phase separation and find that changes from charge- to hydrophobicity-mediated interactions can break the symmetry between intra- and intermolecular interactions. We also provide proof of principle for how the model can be used in force field refinement. Our work refines and quantifies the established rules governing the connection between sequence features and phase-separation propensities, and our prediction models will be useful for interpreting and designing cellular experiments on the role of phase separation, and for the design of IDRs with specific phase-separation propensities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
木光发布了新的文献求助10
1秒前
格子完成签到,获得积分10
2秒前
neo完成签到,获得积分10
3秒前
Xiaoyan完成签到,获得积分10
3秒前
4秒前
FleeToMars完成签到 ,获得积分10
5秒前
Tony12完成签到,获得积分10
5秒前
7秒前
纯情女大完成签到 ,获得积分10
7秒前
不安的松完成签到 ,获得积分10
7秒前
轩辕书白完成签到,获得积分10
8秒前
栗子完成签到 ,获得积分10
8秒前
小通通完成签到,获得积分10
8秒前
zwzh完成签到,获得积分10
9秒前
yu完成签到 ,获得积分10
10秒前
两栖玩家完成签到 ,获得积分10
10秒前
王大京完成签到,获得积分10
10秒前
顾矜应助饼饼采纳,获得10
10秒前
wlnhyF完成签到,获得积分10
12秒前
12秒前
12秒前
tp040900发布了新的文献求助10
12秒前
13秒前
13秒前
黄景瑜完成签到,获得积分20
13秒前
笨笨青筠完成签到 ,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
liu完成签到,获得积分10
15秒前
温暖宛筠完成签到,获得积分10
16秒前
聪慧的娜完成签到 ,获得积分10
16秒前
晓风完成签到,获得积分10
17秒前
尚影芷完成签到,获得积分10
17秒前
18秒前
唐宋发布了新的文献求助10
18秒前
AQ完成签到,获得积分10
19秒前
荔枝的油饼iKun完成签到,获得积分10
19秒前
MchemG应助科研通管家采纳,获得10
19秒前
秘小先儿应助科研通管家采纳,获得10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Exosomes from Umbilical Cord-Originated Mesenchymal Stem Cells (MSCs) Prevent and Treat Diabetic Nephropathy in Rats via Modulating the Wingless-Related Integration Site (Wnt)/β-Catenin Signal Transduction Pathway 500
Global Eyelash Assessment scale (GEA) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4030355
求助须知:如何正确求助?哪些是违规求助? 3569113
关于积分的说明 11356691
捐赠科研通 3299693
什么是DOI,文献DOI怎么找? 1816873
邀请新用户注册赠送积分活动 890973
科研通“疑难数据库(出版商)”最低求助积分说明 813978