Machine learning and eXplainable-AI based prediction of gate-all-around ferroelectric-FET: How ML models influence XAI

计算机科学 稳健性(进化) 神经形态工程学 人工智能 场效应晶体管 晶体管 机器学习 材料科学 计算机工程 算法 人工神经网络 电气工程 工程类 化学 基因 生物化学 电压
作者
Shailendra Yadav,N. Giri,Ashish Maurya,Brajesh Kumar Kaushik,Amita Giri
出处
期刊:Physica Scripta [IOP Publishing]
被引量:1
标识
DOI:10.1088/1402-4896/adc499
摘要

Abstract A novel integration of machine learning (ML) and eXplainable artificial intelligence (XAI) based prediction is proposed to investigate the variability of nanowire (NW) gate-all-around (GAA) ferroelectric-field effect transistors (Fe-FETs). XAI methods such as local interpretable model-agnostic explanations (LIME) and shapley additive explanations (SHAP) enhance the explainability and robustness of ML algorithms for end-users. The NW-GAA-ferro-FETs show tremendous potential for neuromorphic computing systems and compatibility with complementary-metal-oxide-semiconductor technology. The GAA-ferro-FET model is validated using sentaurus technology computer-aided design simulations and experimental data. In this work, the first-ever ML algorithms for NW-GAA-ferro-FETs are proposed, achieving physics-based TCAD accuracy with faster learning and lower computational cost. Compared to ML-based algorithms, physics-based simulation of conventional emerging devices requires a high level of device information and a substantial amount of time to provide correct findings and well-fit models. The ML algorithm achieved a R2-score of 99.96%, a lower mean square error, and completed the average inference in just 71.82 milliseconds, compared to TCAD simulations that would take 400 hours (=17 days) to process 5000 samples. The results indicate that the novel integration of ML and XAI can lead to a substantial reduction in the computational cost associated with various emerging FET devices, such as ferro-FET, feedback FET, tunnel FET, 2D material-based FET, spin-FET, bio-FET, and other next-generation FETs. End-users can receive suggestions and warnings about potential errors before initiating the investigation process, this helps speed up the development of ferro-FET and other next-generation FETs for use in aerospace, defence, and space exploration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
沙耶酱完成签到,获得积分10
2秒前
易只瑜完成签到,获得积分20
2秒前
qqqJUAN发布了新的文献求助10
3秒前
英俊的馒头完成签到,获得积分10
4秒前
CipherSage应助Leohp采纳,获得20
5秒前
无心的无敌完成签到,获得积分10
5秒前
6秒前
慈祥的冰露完成签到,获得积分10
7秒前
lxb驳回了852应助
7秒前
小瓶盖完成签到 ,获得积分10
7秒前
浮游应助视野胤采纳,获得10
9秒前
李洋发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
naraku应助李键刚采纳,获得20
13秒前
Redback完成签到,获得积分10
13秒前
14秒前
bloomjjj发布了新的文献求助10
16秒前
猪猪hero发布了新的文献求助10
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
浮游应助甜蜜暴徒采纳,获得10
17秒前
18秒前
林柚发布了新的文献求助10
18秒前
舟舟完成签到 ,获得积分10
19秒前
英吉利25发布了新的文献求助10
22秒前
爆米花应助小米采纳,获得10
24秒前
简单小白菜完成签到,获得积分10
24秒前
24秒前
小二郎应助梵高的向日葵采纳,获得10
26秒前
27秒前
风中的青完成签到,获得积分10
27秒前
Ccccsa完成签到,获得积分20
27秒前
CiCi完成签到 ,获得积分10
28秒前
28秒前
28秒前
哒哒完成签到,获得积分10
29秒前
田様应助hanlin1107采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490133
求助须知:如何正确求助?哪些是违规求助? 4588844
关于积分的说明 14421594
捐赠科研通 4520646
什么是DOI,文献DOI怎么找? 2476796
邀请新用户注册赠送积分活动 1462282
关于科研通互助平台的介绍 1435188