Abstract 4569: MiRNA signatures in liquid biopsy for early detection of non-small cell lung cancer

肺癌 癌症 小RNA 液体活检 活检 病理 医学 内科学 生物 基因 遗传学
作者
Alessandro Pascon Filho,Giovanna Maria Stanfoca Casagrande,Rodrigo Sampaio Chiarantano,Fabiana de Lima Vazquez,Rui Manuel Reis,Letícia Ferro Leal
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:85 (8_Supplement_1): 4569-4569
标识
DOI:10.1158/1538-7445.am2025-4569
摘要

Background: Liquid biopsy-based biomarkers present a promising approach for non-invasive risk assessment and early detection of lung cancer. Aim: To identify a miRNA signature in sputum and plasma samples as a non-invasive biomarker for early detection of non-small cell lung cancer (NSCLC). Methods: A case-control study was conducted within the Barretos Cancer Hospital Screening Program, utilizing a low-dose CT mobile unit. Sputum and plasma samples were collected from high-risk controls (NLST and/or PLCO criteria; n=61) and NSCLC patients (n=62), matched for age, sex, and smoking history. MiRNA expression was analyzed using the nCounter HumanV3 miRNA panel (Nanostring™). Counts were normalized by the top stable miRNAs, followed by differential expression analysis (p<0.05). MiRNA selection was conducted using Boruta and LASSO. Dataset was partitioned into training and validation sets (85/15 split). Machine learning models (ML) were conducted (Azure) and performance was assessed using AUC (Table 1). Results: In plasma, 68 miRNAs were identified as differentially expressed, and 8 miRNAs were retained following filtering. Among the all-tested models (Table 1), the best ML (Voting Ensemble) for the 8-miRNA plasma signature showed a high accuracy in both training (80.3%, AUC = 0.931) and validation set (73.3%, AUC = 0.892). In sputum, 46 miRNAs were identified as differentially expressed, and 7 miRNAs were retained. The best ML (SVD,Logistic Regression) for the 7-miRNA sputum signature showed a high accuracy in both training (81.42%, AUC = 0.943) and validation set (78.57%, AUC = 0.916). The two defined signatures exhibited no overlap in miRNAs between fluids. Conclusion: This study identified two distinct miRNA fluid-specific signatures in sputum and plasma as potential non-invasive biomarkers for the early detection of lung cancer, underscoring their potential to advance precision-based screening and improve clinical decision-making in lung nodules management. Citation Format: Alessandro Pascon Filho, Giovana M. Stanfoca Casagrande, Rodrigo Sampaio Chiarantano, Fabiana de Lima Vazquez, Rui Manuel Reis M. Reis, Leticia Ferro Leal. MiRNA signatures in liquid biopsy for early detection of non-small cell lung cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2025; Part 1 (Regular Abstracts); 2025 Apr 25-30; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2025;85(8_Suppl_1):Abstract nr 4569.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bear发布了新的文献求助10
2秒前
aaa发布了新的文献求助30
2秒前
紫金之恋完成签到,获得积分10
2秒前
奋斗的醉柳完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
无花果应助大热热采纳,获得10
5秒前
Sylvia完成签到,获得积分10
6秒前
8秒前
好好学习完成签到,获得积分10
10秒前
bear完成签到,获得积分20
10秒前
妙木仙发布了新的文献求助10
11秒前
Frank应助hajimi采纳,获得10
11秒前
11秒前
乐空思应助gloval采纳,获得10
11秒前
诚心的松思完成签到,获得积分10
12秒前
vivi发布了新的文献求助10
13秒前
庾楼月宛如昨完成签到 ,获得积分10
13秒前
默默友儿完成签到 ,获得积分10
14秒前
14秒前
巧克力完成签到 ,获得积分0
15秒前
aaa完成签到,获得积分10
15秒前
团子团子猪完成签到,获得积分10
15秒前
科目三应助任炳成采纳,获得10
17秒前
FashionBoy应助q792309106采纳,获得10
18秒前
nannan完成签到 ,获得积分10
18秒前
破茧完成签到,获得积分10
18秒前
大热热发布了新的文献求助10
19秒前
jovrtic发布了新的文献求助10
21秒前
小黄车完成签到,获得积分10
22秒前
元谷雪发布了新的文献求助10
22秒前
眼睛大枫完成签到,获得积分10
23秒前
事事包子完成签到 ,获得积分10
23秒前
眼睛大的冰蓝完成签到,获得积分10
23秒前
24秒前
一禅完成签到 ,获得积分10
24秒前
26秒前
Fan完成签到 ,获得积分10
27秒前
Simon完成签到,获得积分10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603579
求助须知:如何正确求助?哪些是违规求助? 4688574
关于积分的说明 14854759
捐赠科研通 4693983
什么是DOI,文献DOI怎么找? 2540888
邀请新用户注册赠送积分活动 1507108
关于科研通互助平台的介绍 1471806