SSC-Net: A multi-task joint learning network for tongue image segmentation and multi-label classification

计算机科学 人工智能 舌头 分割 模式识别(心理学) 特征(语言学) 任务(项目管理) 特征提取 计算机视觉 医学 工程类 病理 系统工程 语言学 哲学
作者
Xiaopeng Sha,Zheng Guan,Ying Wang,Jinglu Han,Yunxin Wang,Zhaojun Chen
出处
期刊:Digital health [SAGE Publishing]
卷期号:11 被引量:12
标识
DOI:10.1177/20552076251343696
摘要

Background Traditional Chinese medicine (TCM) tongue diagnosis, through the comprehensive observation of tongue’s diverse characteristics, allows an understanding of the state of the body’s viscera as well as Qi and blood levels. Automatic tongue image recognition methods could support TCM practitioners by providing auxiliary diagnostic suggestions. However, most learning-based methods often address a narrow scope of the tongue’s attributes, failing to fully exploit the information contained within the tongue images. Objective To classify multifaceted tongue characteristics, and fully utilize the latent correlation information between tongue segmentation and classification tasks, we proposed a multi-task joint learning network for simultaneous tongue body segmentation and multi-label Classification, named SSC-Net. Methods Firstly, the shared feature encoder extracts features for both segmentation and classification tasks, where the segmentation result is utilized to mask redundant features that may impede classification accuracy. Subsequently, the ROI extraction module locates and extracts the tongue body region, and the feature fusion module combines tongue body features from bottom to top. Finally, a fine-grained classification module is employed for multi-label classification on multiple tongue characteristics. Results To evaluate the performance of the SSC-Net, we collected a tongue image dataset, BUCM, and conducted extensive experiments on it. The experimental results show that the proposed method when segmenting and classifying simultaneously, achieved 0.9943 DSC for the segmentation task, 92.02 mAP, and 0.851 overall F1-score for the classification task. Conclusion The proposed method can effectively classify multiple tongue characteristics with the support of the multi-task learning strategy and the integration of a fine-grained classification module. Code is available here.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Stubborn完成签到,获得积分10
1秒前
1秒前
2秒前
齐阳春完成签到 ,获得积分10
2秒前
2秒前
2秒前
orixero应助冷酷的雨采纳,获得10
3秒前
核桃发布了新的文献求助10
4秒前
4秒前
万能图书馆应助哈哈哈采纳,获得10
4秒前
1000x完成签到,获得积分10
6秒前
whh123发布了新的文献求助10
7秒前
咸蛋吵人完成签到,获得积分10
7秒前
7秒前
柏事完成签到 ,获得积分10
7秒前
Tourist应助yy采纳,获得10
8秒前
科研科研完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助80
14秒前
哈哈哈完成签到,获得积分20
15秒前
浮游应助博修采纳,获得10
15秒前
15秒前
17秒前
18秒前
ccm应助吴锦鸿采纳,获得10
18秒前
哈哈哈发布了新的文献求助10
18秒前
研友_VZG7GZ应助闫HH采纳,获得10
20秒前
21秒前
21秒前
23秒前
重要山彤发布了新的文献求助10
26秒前
BRADp完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
小饼干发布了新的文献求助10
28秒前
28秒前
黄静薇发布了新的文献求助10
28秒前
30秒前
31秒前
小吴完成签到,获得积分10
32秒前
33秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133750
求助须知:如何正确求助?哪些是违规求助? 4334869
关于积分的说明 13504849
捐赠科研通 4171924
什么是DOI,文献DOI怎么找? 2287356
邀请新用户注册赠送积分活动 1288337
关于科研通互助平台的介绍 1229173