Hyperrectangle Embedding for Debiased 3D Scene Graph Prediction From RGB Sequences

人工智能 计算机科学 RGB颜色模型 嵌入 模式识别(心理学) 计算机视觉 图形 理论计算机科学
作者
Mingtao Feng,Chan Kit Yan,Zijie Wu,Weisheng Dong,Yaonan Wang,Ajmal Mian
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (8): 6410-6426 被引量:34
标识
DOI:10.1109/tpami.2025.3560090
摘要

3D scene graph has emerged as a powerful high-level representation of the environment and is regarded as a prerequisite for long-term autonomous robotic operations. A practical research problem here is to predict the 3D scene graph from sequentially captured data. However, existing methods neglect the polysemy of semantic roles that coarse feature vectors are insufficient to represent entities in different relationship semantics. This extremely limits their capability to predict relationships. We propose an approach to tackle the aforementioned challenge by introducing a novel representation, the hyperrectangle embedding, which represents entity using distinctive geometry for more effective scene understanding, rather than learning within vector-based feature with blindly increasing dimensions. By incorporating an entity within two affine-transformed embeddings, each representing either the subject or object and characterized by separate learnable transformations, we achieve the polysemy of semantic roles. The intersections of affine-transformed hyperrectangle embeddings represent the bidirectional relationship between two entities. We identify bias and reliability as two challenges impeding the model learning process. In response to the bias, that arises from long-tailed distributions in the data, we propose a history-guided debiasing strategy that utilizes a confusion history block comprised of previous hyperrectangle embeddings. This strategy mitigates inherent biases by extracting pertinent information and facilitating knowledge transfer from dominant categories to rare ones. To enhance the reliability of predictions, we introduce predictive uncertainty into the 3D scene graph prediction task. We develop a post-hoc reliability enhancement strategy to identify potentially unreliable predictions and subsequently enhance the model's predictive accuracy. Extensive experiments on the 3DSSG dataset show the effectiveness of the proposed method in this challenging task, outperforming existing state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
葡萄成熟时完成签到 ,获得积分10
1秒前
浮游应助yijiaobaijing采纳,获得10
1秒前
羊布吃稻完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
斗罗大陆完成签到,获得积分10
2秒前
杨佳霖完成签到,获得积分20
2秒前
sail发布了新的文献求助10
2秒前
小王发布了新的文献求助10
2秒前
吴珊完成签到,获得积分10
2秒前
阿涛发布了新的文献求助10
3秒前
大鸟依人发布了新的文献求助30
3秒前
Harvey3568发布了新的文献求助10
4秒前
4秒前
远方发布了新的文献求助10
4秒前
乐乐应助钙钛矿狗采纳,获得10
5秒前
文静的天蓝完成签到,获得积分10
5秒前
八乙基环辛四烯完成签到,获得积分10
6秒前
一段段发布了新的文献求助10
6秒前
6秒前
今后应助林早上采纳,获得10
7秒前
QQ完成签到 ,获得积分10
7秒前
兔兔发布了新的文献求助10
8秒前
hui完成签到,获得积分10
8秒前
kangshuai完成签到,获得积分10
8秒前
lin完成签到,获得积分20
9秒前
Sun1c7发布了新的文献求助10
9秒前
温暖的定格完成签到,获得积分10
9秒前
Jian发布了新的文献求助10
10秒前
zzh完成签到,获得积分10
10秒前
10秒前
FashionBoy应助hhh采纳,获得10
10秒前
shezhinicheng发布了新的文献求助10
11秒前
脑洞疼应助琉璃采纳,获得10
11秒前
健忘的灵槐完成签到,获得积分10
11秒前
12秒前
李爱国应助武坤采纳,获得10
12秒前
XiaoMaomi完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414143
求助须知:如何正确求助?哪些是违规求助? 4531221
关于积分的说明 14127191
捐赠科研通 4446413
什么是DOI,文献DOI怎么找? 2439403
邀请新用户注册赠送积分活动 1431510
关于科研通互助平台的介绍 1409212