已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning classifiers in clustered data: BCI pattern recognition model for EEG-based human emotion recognition

人工智能 脑电图 模式识别(心理学) 计算机科学 随机森林 希尔伯特-黄变换 聚类分析 支持向量机 特征选择 特征(语言学) 核(代数) Lasso(编程语言) 机器学习 语音识别 数学 心理学 语言学 哲学 滤波器(信号处理) 组合数学 精神科 万维网 计算机视觉
作者
Raoufeh Kheirabadi,Hesam Omranpour
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Taylor & Francis]
卷期号:27 (12): 1649-1663
标识
DOI:10.1080/10255842.2023.2252953
摘要

AbstractEvidence suggests that human emotions can be detected using Electroencephalography (EEG) brain signals. Recorded EEG signals, due to their large size, may not initially perform well in classification. For this reason, various feature selection methods are used to improve the performance of classification. The nature of EEG signals is complex and unstable. This article uses the Empirical Mode Decomposition (EMD) method, which is one of the most successful methods in analyzing these signals in recent years. In the proposed model, first, the EEG signals are decomposed using EMD into the number of Intrinsic Mode Functions (IMF), and then, the statistical properties of the IMFs are extracted. To improve the performance of the proposed model, using the RBF kernel and Least Absolute Shrinkage and Selection Operator (LASSO) feature selection, an effective subset of the features that have changed the space is selected. The data are then clustered, and finally, each cluster is classified with a decision tree and random forest and KNN. The purpose of clustering is to increase the accuracy of the classification, which is achieved by focusing each cluster on a limited number of classes. This experiment was performed on the DEAP dataset. The results show that the proposed model with 99.17% accuracy could perform better than recent research such as deep learning and show good performance. In the latest years, with the development of the BCI system, the demand for recognizing emotions based on EEG has increased. We provide a method for classifying clustered data that is efficient for high accuracy.Keywords: Human emotion recognitionEMDbrain-computer-interfaceLASSOEEG Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe authors gratefully acknowledge Babol Noshirvani University of Technology, Iran for the financial support for the present research through research Grant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duoduoqian完成签到,获得积分10
刚刚
云雾完成签到 ,获得积分10
1秒前
阿尔曼完成签到 ,获得积分10
2秒前
科研通AI5应助bsnc采纳,获得10
2秒前
贾宝山发布了新的文献求助10
4秒前
Lucas应助凉月壹贰采纳,获得10
4秒前
dwas完成签到,获得积分10
4秒前
傢誠发布了新的文献求助10
7秒前
zzc张晨完成签到,获得积分10
8秒前
科研兵发布了新的文献求助10
14秒前
17秒前
17秒前
星辰大海应助小贝采纳,获得10
19秒前
20秒前
sunshine应助春和景明采纳,获得10
22秒前
美羊羊完成签到 ,获得积分10
23秒前
羊呀呀完成签到 ,获得积分10
23秒前
扶摇完成签到 ,获得积分10
23秒前
weijun发布了新的文献求助200
24秒前
丘比特应助蓝桉采纳,获得10
27秒前
rmbsLHC发布了新的文献求助10
27秒前
27秒前
科研通AI5应助傢誠采纳,获得10
28秒前
28秒前
贾宝山关注了科研通微信公众号
29秒前
30秒前
sam发布了新的文献求助10
31秒前
33秒前
天天快乐应助菜大鸭采纳,获得10
33秒前
33秒前
陈伊洋发布了新的文献求助10
34秒前
救驾来迟发布了新的文献求助10
36秒前
weijun完成签到,获得积分10
36秒前
菜大鸭完成签到,获得积分20
37秒前
慕青应助坚强的秋尽采纳,获得10
37秒前
38秒前
阿腾发布了新的文献求助10
39秒前
哈哈哈哈哈完成签到 ,获得积分10
39秒前
Fjj发布了新的文献求助10
39秒前
一步一个脚印完成签到,获得积分10
40秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
Effects of Receptive Music Therapy Combined with Virtual Reality on Prevalent Symptoms in Patients with Advanced Cancer 282
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811300
求助须知:如何正确求助?哪些是违规求助? 3355715
关于积分的说明 10377349
捐赠科研通 3072493
什么是DOI,文献DOI怎么找? 1687627
邀请新用户注册赠送积分活动 811700
科研通“疑难数据库(出版商)”最低求助积分说明 766762