Imbalanced least squares regression with adaptive weight learning

判别式 计算机科学 人工智能 趋同(经济学) 班级(哲学) 放松(心理学) 基质(化学分析) 二进制数 约束(计算机辅助设计) 机器学习 变换矩阵 模式识别(心理学) 数学优化 数学 心理学 社会心理学 材料科学 几何学 算术 运动学 物理 经典力学 经济 复合材料 经济增长
作者
Yanting Li,Junwei Jin,Jiangtao Ma,Fubao Zhu,Baohua Jin,Jing Liang,C. L. Philip Chen
出处
期刊:Information Sciences [Elsevier BV]
卷期号:648: 119541-119541 被引量:29
标识
DOI:10.1016/j.ins.2023.119541
摘要

Least squares regression (LSR) has demonstrated promising performance in various classification tasks owing to its effectiveness and efficiency. However, there are some deficiencies that seriously hinder its application in imbalanced data scenarios. The first is that LSR strongly relies on a balanced class distribution. A severely imbalanced class distribution may seriously damage the effectiveness of the algorithm. Second, the utilized binary label matrix in the conventional LSR model may be too strict to learn a discriminative transformation matrix for imbalanced learning. To address the above issues, in this paper, an adaptive weight learning mechanism and label relaxation constraint are proposed and incorporated into the framework of LSR to tackle the imbalanced classification problem. The weight of each sample can be adaptively obtained according to the original distribution information of the imbalanced data, in which the importance of minority class samples can be better reflected with larger weights. A new label relaxation matrix consisting of the original label matrix and auxiliary matrix is constructed to widen the margins between different classes. Further, we provide an iterative algorithm with fast convergence to solve the resulting optimization problem. Extensive experimental results on diverse binary-class and multi-class imbalanced datasets show that the proposed method outperforms many other state-of-the-art imbalanced learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大成子发布了新的文献求助10
刚刚
kyrie完成签到,获得积分10
1秒前
1秒前
abjz完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
2秒前
minorcold完成签到,获得积分10
3秒前
miao完成签到,获得积分10
3秒前
30040完成签到,获得积分10
3秒前
3秒前
华仔完成签到,获得积分10
3秒前
鑫鑫完成签到,获得积分10
4秒前
尺八发布了新的文献求助10
4秒前
Ccccc发布了新的文献求助30
5秒前
冰淇淋啦啦啦完成签到,获得积分20
5秒前
科研通AI5应助cimy采纳,获得10
5秒前
Song0558发布了新的文献求助10
5秒前
5秒前
科研通AI5应助铁铁采纳,获得10
6秒前
DARKNESS完成签到,获得积分10
6秒前
温婉的从凝完成签到,获得积分20
7秒前
7秒前
风中远山发布了新的文献求助10
7秒前
SongNan_Ding发布了新的文献求助10
8秒前
云初完成签到 ,获得积分10
8秒前
8秒前
shmily完成签到,获得积分10
9秒前
9秒前
小徐要上学完成签到,获得积分10
9秒前
9秒前
不安的橘子完成签到 ,获得积分10
9秒前
minorcold发布了新的文献求助10
10秒前
未夕晴完成签到,获得积分10
10秒前
10秒前
骆驼牛子发布了新的文献求助10
10秒前
小李完成签到,获得积分10
11秒前
11秒前
Jenkin完成签到,获得积分10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792971
求助须知:如何正确求助?哪些是违规求助? 3337641
关于积分的说明 10286083
捐赠科研通 3054212
什么是DOI,文献DOI怎么找? 1675888
邀请新用户注册赠送积分活动 803875
科研通“疑难数据库(出版商)”最低求助积分说明 761578