Mineral Characterization Using Scanning Electron Microscopy (SEM): A Review of the Fundamentals, Advancements, and Research Directions

表征(材料科学) 纳米技术 扫描电子显微镜 人工智能 计算机科学 材料科学 复合材料
作者
Asif Ali,Ning Zhang,Rafael M. Santos
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:13 (23): 12600-12600 被引量:21
标识
DOI:10.3390/app132312600
摘要

Scanning electron microscopy (SEM) is a powerful tool in the domains of materials science, mining, and geology owing to its enormous potential to provide unique insight into micro and nanoscale worlds. This comprehensive review discusses the background development of SEM, basic SEM operation, including specimen preparation and image processing, and the fundamental theoretical calculations underlying SEM operation. It provides a foundational understanding for engineers and scientists who have never had a chance to dig in depth into SEM, contributing to their understanding of the workings and development of this robust analytical technique. The present review covers how SEM serves as a crucial tool in mineral characterization, with specific discussion on the workings and research fronts of SEM-EDX, SEM-AM, SEM-MLA, and QEMSCAN. With automation gaining pace in the development of all spheres of technology, understanding the uncertainties in SEM measurements is very important. The constraints in mineral phase identification by EDS spectra and sample preparation are conferred. In the end, future research directions for SEM are analyzed with the possible incorporation of machine learning, deep learning, and artificial intelligence tools to automate the process of mineral identification, quantification, and efficient communication with researchers so that the robustness and objectivity of the analytical process can be improved and the analysis time and involved costs can be reduced. This review also discusses the idea of integrating robotics with SEM to make the equipment portable so that further mineral characterization insight can be gained not only on Earth but also on other terrestrial grounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
popooo完成签到,获得积分10
2秒前
爱听歌的大地完成签到 ,获得积分0
4秒前
小小完成签到,获得积分10
4秒前
慌慌张张的张张完成签到,获得积分20
4秒前
四羟基合铝酸钾完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
Tang完成签到,获得积分10
7秒前
8秒前
啦啦啦发布了新的文献求助10
9秒前
10秒前
12秒前
科研狗发布了新的文献求助10
12秒前
李健应助李好采纳,获得10
13秒前
拜拜拜发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
雪蛋儿完成签到 ,获得积分10
14秒前
16秒前
17秒前
科研通AI6应助灵感大王喵采纳,获得10
18秒前
Zn发布了新的文献求助30
18秒前
CodeCraft应助细心的恋风采纳,获得10
19秒前
寂寞的介茉完成签到,获得积分10
19秒前
xianyu发布了新的文献求助10
22秒前
22秒前
黄臻发布了新的文献求助10
23秒前
25秒前
bkagyin应助啦啦啦采纳,获得10
26秒前
gnufgg完成签到,获得积分10
27秒前
28秒前
28秒前
29秒前
量子星尘发布了新的文献求助10
30秒前
无奈的醉薇完成签到,获得积分10
30秒前
菠萝吹雪发布了新的文献求助10
32秒前
Jasper应助AAA问题批发商采纳,获得10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4637418
求助须知:如何正确求助?哪些是违规求助? 4031344
关于积分的说明 12472888
捐赠科研通 3718264
什么是DOI,文献DOI怎么找? 2052126
邀请新用户注册赠送积分活动 1083381
科研通“疑难数据库(出版商)”最低求助积分说明 965279