Performance evaluation of hybrid constructed wetlands for nitrogen removal and statistical approaches

均方误差 支持向量机 水力停留时间 生化需氧量 氮气 环境科学 污染 化学需氧量 环境工程 浊度 线性回归 数学 统计 计算机科学 机器学习 化学 生态学 污水处理 生物 有机化学
作者
Suresh Kumar,Vikramaditya Sangwan,Munish Kumar,Shweta Shweta,Shivani Khandelwal,Manoj Kumar,Surinder Deswal
出处
期刊:Water Environment Research [Wiley]
卷期号:95 (10) 被引量:2
标识
DOI:10.1002/wer.10932
摘要

Nitrogen pollution in water bodies has become a pressing environmental and public health issue worldwide, demanding the implementation of effective nitrogen removal strategies. This research paper delves into the performance evaluation of hybrid constructed wetlands (HCWs) as a sustainable and innovative approach for nitrogen removal, employing a comprehensive year-long dataset gathered from a practical setup. The study collected data under diverse operating conditions to investigate the effectiveness of HCWs in removing nitrogen. Results revealed that HCWs achieved nitrogen removal efficiencies ranging from 28% to 65%, influenced by temperature and hydraulic retention time. Optimal removal occurred at an average temperature of 28°C and a 4-day hydraulic retention time. Notably, performance declined during colder periods, with temperatures below 15°C. The study also aims to predict nitrogen removal by three modeling techniques, that is, artificial neural networks (ANNs), support vector machines Pearson VII kernel function (SVM PUK), and multiple linear regression (MLR). Prediction has been done considering temperature (TEMP), hydraulic loading rate (HLR), initial concentration of chemical oxygen demand (COD) (CODin), initial concentration of total nitrogen (TNin ), initial concentration of total phosphorous (TPin ), and initial concentration of turbidity (TBin ) as input parameters, whereas reduction of total nitrogen (RED TN) is regarded as output parameter. The performance of the soft computing techniques has been compared in terms of coefficient of determination (R2 ), root mean square error (RMSE), and mean absolute error (MAE). The analysis revealed that the performance of the SVM (PUK) model (R2 : 0.572, RMSE: 0.0359, MAE: 0.0294) for the prediction of TN reduction is superior followed by MLR (R2 : 0.562, RMSE: 0.0365, MAE: 0.0294) and ANN (R2 : 0.597, RMSE: 0.0377, MAE: 0.0301). The present study concludes that the treated effluent by the HCWs, using water hyacinth and water lettuce, is of fair quality, thus having potential application for the treatment of rice mill wastewater in warmer climates. Further, machine learning approaches employed in estimating the total nitrogen reduction by HCWs technology have shown promising applicability and utilization in such studies. PRACTITIONER POINTS: Hybrid constructed wetlands (HCWs) are effective in removing nitrogen from wastewater. The performance of HCWs in nitrogen removal can vary due to physical, chemical, and biological processes. The performance of the HCWs highly depends on temperature and hydraulic retention time. Artificial neural networks (ANNs) and support vector machines (SVMs) provided better predictions of nitrogen removal with high accuracy and low root mean square error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅辰完成签到 ,获得积分10
2秒前
不要再忘登陆密码了完成签到,获得积分10
5秒前
Stone发布了新的文献求助10
11秒前
小蘑菇应助fly采纳,获得10
12秒前
MZ完成签到,获得积分0
12秒前
学术狂徒劲别完成签到,获得积分10
15秒前
千千千千千千青完成签到 ,获得积分10
22秒前
淡然平蓝完成签到 ,获得积分10
24秒前
我独舞完成签到 ,获得积分10
27秒前
29秒前
慕容博完成签到 ,获得积分10
33秒前
小田完成签到 ,获得积分10
36秒前
zokor完成签到 ,获得积分10
39秒前
酷酷邴完成签到,获得积分10
40秒前
ZhouYW完成签到,获得积分0
42秒前
无情夏寒完成签到 ,获得积分10
43秒前
46秒前
赛百味完成签到,获得积分10
47秒前
鸿毛药玖完成签到,获得积分10
48秒前
贝贝完成签到 ,获得积分10
49秒前
光亮语梦完成签到 ,获得积分10
49秒前
49秒前
53秒前
Titanium发布了新的文献求助10
54秒前
cdercder完成签到,获得积分0
54秒前
jerry完成签到 ,获得积分10
55秒前
CipherSage应助科研通管家采纳,获得10
55秒前
余味应助科研通管家采纳,获得10
56秒前
cdercder应助科研通管家采纳,获得10
56秒前
科研通AI5应助科研通管家采纳,获得100
56秒前
斯文败类应助科研通管家采纳,获得30
56秒前
余味应助科研通管家采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
CyberHamster完成签到,获得积分10
57秒前
gege完成签到,获得积分10
58秒前
58秒前
星辰大海应助郭伟采纳,获得10
1分钟前
太叔夜南完成签到,获得积分10
1分钟前
聪明的鹤完成签到 ,获得积分10
1分钟前
奔奔完成签到 ,获得积分10
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800980
求助须知:如何正确求助?哪些是违规求助? 3346569
关于积分的说明 10329587
捐赠科研通 3063068
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726