An efficient circRNA-miRNA interaction prediction model by combining biological text mining and wavelet diffusion-based sparse network structure embedding

计算机科学 嵌入 自编码 模式识别(心理学) 数据挖掘 人工智能 源代码 机器学习 算法 深度学习 操作系统
作者
Xin-Fei Wang,Chang-Qing Yu,Zhu‐Hong You,Yan Qiao,Zhengwei Li,Wenzhun Huang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107421-107421 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.107421
摘要

Accumulating clinical evidence shows that circular RNA (circRNA) plays an important regulatory role in the occurrence and development of human diseases, which is expected to provide a new perspective for the diagnosis and treatment of related diseases. Using computational methods can provide high probability preselection for wet experiments to save resources. However, due to the lack of neighborhood structure in sparse biological networks, the model based on network embedding and graph embedding is difficult to achieve ideal results.In this paper, we propose BioDGW-CMI, which combines biological text mining and wavelet diffusion-based sparse network structure embedding to predict circRNA-miRNA interaction (CMI). In detail, BioDGW-CMI first uses the Bidirectional Encoder Representations from Transformers (BERT) for biological text mining to mine hidden features in RNA sequences, then constructs a CMI network, obtains the topological structure embedding of nodes in the network through heat wavelet diffusion patterns. Next, the Denoising autoencoder organically combines the structural features and Gaussian kernel similarity, finally, the feature is sent to lightGBM for training and prediction. BioDGW-CMI achieves the highest prediction performance in all three datasets in the field of CMI prediction. In the case study, all the 8 pairs of CMI based on circ-ITCH were successfully predicted.The data and source code can be found at https://github.com/1axin/BioDGW-CMI-model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哎健身完成签到 ,获得积分10
刚刚
美丽的元瑶完成签到 ,获得积分10
1秒前
3号球衣发布了新的文献求助10
2秒前
倒霉蛋完成签到,获得积分10
2秒前
CPPP发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
田様应助春和井鸣采纳,获得30
4秒前
领导范儿应助Ghatroth采纳,获得10
4秒前
5秒前
汉堡包应助胡高照采纳,获得10
5秒前
5秒前
张立敏完成签到,获得积分10
5秒前
Bob发布了新的文献求助10
6秒前
6秒前
英姑应助科研通管家采纳,获得10
7秒前
缥缈冷珍完成签到,获得积分20
7秒前
changping应助科研通管家采纳,获得150
7秒前
所所应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
changping应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
8秒前
李爱国应助科研通管家采纳,获得30
8秒前
8秒前
herococa应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074229
求助须知:如何正确求助?哪些是违规求助? 4294374
关于积分的说明 13381128
捐赠科研通 4115792
什么是DOI,文献DOI怎么找? 2253873
邀请新用户注册赠送积分活动 1258494
关于科研通互助平台的介绍 1191343