燃烧室
材料科学
燃烧
合成气
压力降
复合材料
氢
核工程
化学工程
化学
热力学
物理
有机化学
工程类
作者
Kyriakos Fotiadis,Akrivi Asimakopoulou,Penelope Baltzopoulou,Georgia Kastrinaki,Dimitrios Koutsonikolas,George Karagiannakis,G. Skevis,Jana Richter,Fabian Mauß
出处
期刊:Energies
[MDPI AG]
日期:2023-10-09
卷期号:16 (19): 7014-7014
摘要
In the present work, a novel foam burner design is proposed and experimentally evaluated for operation with highly diluted syngas mixtures. The lab-scale burner consists of a purpose-built, square-shaped, high-temperature-grade stainless steel tubular reactor filled with square-sectioned siliconized silico carbide (SiSiC) foams. The assembly was installed in an electrical furnace. Spatially resolved temperature measurements were obtained along the reactor axis, while simultaneous measurements of CO, CO2, H2, O2, and N2 were taken at the burner exit and the water levels were recorded upstream and downstream of the reactor. The results clearly show that flames can be stabilized along the reactor for a range of foam characteristics and operating conditions. Hydrogen conversion efficiencies in excess of 98%, and overall thermal efficiencies close to 95% were achieved for the selected operating conditions. Overall, the denser 10 ppi foam demonstrated superior combustion characteristics in terms of stability, lower enthalpy rises, and a wider operating range at the expense of a very modest pressure drop penalty. Finally, scanning electron microscopy, coupled with energy dispersion spectroscopy (SEM/EDS) and Raman spectroscopy analyses, was used to determine the morphological and compositional characteristics of the pristine and aged foams. After more than 100 h of operation, no significant performance degradation was observed, even though the burner design was subjected to considerable thermal stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI