Deep reinforcement learning with reward shaping for tracking control and vibration suppression of flexible link manipulator

控制理论(社会学) 强化学习 计算机科学 稳健性(进化) 卡尔曼滤波器 控制工程 人工智能 工程类 控制(管理) 生物化学 化学 基因
作者
Joshi Kumar Viswanadhapalli,Vinodh Kumar Elumalai,S. Shivram,S. Shah,Dhruv Mahajan
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:152: 110756-110756 被引量:17
标识
DOI:10.1016/j.asoc.2023.110756
摘要

This paper puts forward a novel deep reinforcement learning control using deep deterministic policy gradient (DRLC-DDPG) framework to address the reference tracking and vibration suppression problem of rotary flexible link (RFL) manipulator. Specifically, this study attempts to address the continuous action space DRLC problem through DDPG algorithm and presents a Lyapunov function based reward shaping approach for guaranteed deep reinforcement learning (DRL) convergence and enhanced speed of training. The proposed approach synthesizes the hard and soft constraints of the flexible manipulator as a constrained Markov decision problem (MDP) and evaluates the performance of DRLC-DDPG framework through hardware in loop (HIL) testing to realize precise servo tracking and suppressed vibration of the flexible manipulator. For identifying the dynamical model of the RFL, an empirical Auto-Regressive eXogenous (ARX) model using the closed loop identification technique is built. Moreover, to extract the true states (servo angle and deflection angle) from the actual measurements, which typically have the influence of sensor noise, an adaptive Kalman filter (AKF) is augmented with the DRLC scheme. The experimental results of DRLC-DDPG scheme compared with those of the model predictive control (MPC) for several test cases reveal that the proposed scheme is superior to MPC both in terms of trajectory tracking and robustness against the external disturbances and model uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
威武语儿发布了新的文献求助10
3秒前
3秒前
4秒前
然然完成签到,获得积分10
4秒前
仙笛童神发布了新的文献求助10
4秒前
多情宛海应助笨笨采纳,获得10
7秒前
7秒前
8秒前
9秒前
CodeCraft应助阿哲采纳,获得10
9秒前
9秒前
甜甜芾应助狂野的天薇采纳,获得10
10秒前
花花不花发布了新的文献求助10
10秒前
fanfan发布了新的文献求助30
10秒前
无花果应助紫色系采纳,获得10
11秒前
情怀应助cloud采纳,获得10
11秒前
芝士大王发布了新的文献求助10
12秒前
13秒前
萨伊普发布了新的文献求助10
14秒前
jenningseastera应助仙笛童神采纳,获得10
14秒前
香蕉觅云应助DownTAT采纳,获得10
14秒前
爆米花应助魔法签证1993采纳,获得10
15秒前
sleet完成签到 ,获得积分10
15秒前
17秒前
顾天与完成签到,获得积分10
19秒前
无花果应助Mikey采纳,获得10
20秒前
科研通AI5应助xuan采纳,获得10
21秒前
包容爆米花完成签到,获得积分10
21秒前
科研通AI5应助萨伊普采纳,获得10
26秒前
动漫大师发布了新的文献求助30
27秒前
科研通AI5应助yanier采纳,获得10
27秒前
我是老大应助冷冷采纳,获得50
27秒前
28秒前
28秒前
在水一方应助机器猫采纳,获得10
28秒前
传奇3应助yu采纳,获得10
29秒前
29秒前
29秒前
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797784
求助须知:如何正确求助?哪些是违规求助? 3343264
关于积分的说明 10315131
捐赠科研通 3060016
什么是DOI,文献DOI怎么找? 1679212
邀请新用户注册赠送积分活动 806436
科研通“疑难数据库(出版商)”最低求助积分说明 763150